Nature’s prescription: decoding the power of biopolymers in medical and pharmaceutical applications

Authors

DOI:

https://doi.org/10.62638/ZasMat1205

Keywords:

biopolymers, biosensing, drug delivery, surgical implants, tissue engineering

Abstract

Over the past few years, the utilization of several biopolymers of natural, synthetic or microbial origin has witnessed a peak in various medical and pharmaceutical applications, like drug delivery, drug formulation, tissue engineering scaffolds, medical implants (e.g., prosthetics, stents), wound healing and dressing materials, and biosensing. This is mainly attributed to their ease of processing, biodegradability, high bioactivity, and biocompatibility compared to synthetic polymers. Moreover, a surge in the development of bio-/nanocomposites has emerged, with an aim to enhance the inherent properties of raw biopolymers derived from natural/microbial sources. This review mainly focuses on the different types of biopolymers or their composites utilized in medicinal or pharmaceutical industries and sheds light on the key advantages and limitations associated with their synthesis or use. Furthermore, the article presents a list of commercialized biopolymer composites with a discussion on the future scope of using these “gifts of nature” in the medical field.

References

T.D.Moshood, G. Nawanir, F.Mahmud, F. Moha-mad, M.H.Ahmad, A.AbdulGhani (2022) Sustai-nability of biodegradable plastics: new problem or solution to solve the global plastic pollution?, Curr. Res. Green Sustain. Chem., 5, 100273. https://doi.org/10.1016/j.crgsc.2022.100273

A.Lotfi, H.Li, D.V.Dao, G.Prusty (2021) Natural fiber–reinforced composites: a review on material, manufacturing, and machinability, J. Thermoplast. Compos. Mater., 34, 238-284. https://doi.org/10.1177/0892705719844546

M.Hassan, J.Bai, D.Q.Dou (2019) Biopolymers; definition, classification and applications, Egypt. J. Chem., 62, 1725-1737. https://doi.org/10.21608/ejchem.2019.6967.1580

M.G.Rao, P.Bharathi, R.M.Akila (2014) A comprehensive review on biopolymers, Sci. Rev. Chem. Commun., 4, 61-68.

A.Aravamudhan, D.M.Ramos, A.A.Nada, S.G. Kumbar (2014) Natural polymers: Polysaccharides and their derivatives for biomedical applications, book Natural and Synthetic Biomedical Polymers, Elsevier, Amsterdam, The Netherlands, p. 67-89.

S.Y.Rong, N.M.Mubarak, F.A.Tanjung (2017) Structure-property relationship of cellulose nanowhiskers reinforced chitosan biocomposite films, J. Environ. Chem. Eng., 5, 6132-6136. https://doi.org/10.1016/j.jece.2017.11.054

L.M.Madikizela, L.Chimuka (2016) Synthesis, adsorption and selectivity studies of a polymer imprinted with naproxen, ibuprofen and diclofenac, J. Environ. Chem. Eng., 4, 4029-4037. https://doi.org/10.1016/j.jece.2016.09.012

R.Bhatt, M.Jaffe (2015) Biopolymers in medical implants, book Excipient applications in formulation design and drug delivery, Springer, Cham, p. 311-348.

I.Bano, M.Arshad, T.Yasin, M.A.Ghauri, M.Younus (2017) Chitosan: a potential biopolymer for wound management, Int. J. Biol. Macromol., 102, 380-383. https://doi.org/10.1016/j.ijbiomac.2017.04.047

A.George, M.R.Sanjay, R.Srisuk, J.Parameswa-ranpillai, S.Siengchin (2020) A comprehensive review on chemical properties and applications of biopolymers and their composites, Int. J. Biol. Macromol., 154, 329-338.

https://doi.org/10.1016/j.ijbiomac.2020.03.120

J.Baranwal, B.Barse, A.Fais, G.L.Delogu, A.Kumar (2022) Biopolymer: a sustainable material for food and medical applications, Polymers, 14, 983. https://doi.org/10.3390/polym14050983

N.Jabeen, M.Atif (2023) Polysaccharides based biopolymers for biomedical applications: a review, Polym. Adv. Technol., 35, e6203. https://doi.org/10.1002/pat.6203

P.Gupta, K.K.Nayak (2015) Characteristics of protein-based biopolymer and its application, Polym. Eng. Sci., 55, 485-498. https://doi.org/10.1002/pen.23928

P.Snetkov, K.Zakharova, S.Morozkina, R.Olekhnovich, M.Uspenskaya (2020) Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer, Polymers, 12, 1800. https://doi.org/10.3390/polym12081800

S.L.Spurlock, G.H.Spurlock, S.Bernstad, P. Michanek, S.T.Chester (1999) Treatment of acute superficial flexor tendon injuries in performance horses with high molecular weight sodium hyaluronate, J. Equine Vet. Sci., 19, 338-344. https://doi.org/10.1016/S0737-0806(06)82052-6

F.Tao, Y.Cheng, X.Shi, H.Zheng, Y.Du, W.Xiang, H.Deng (2020) Applications of chitin and chitosan nanofibers in bone regenerative engineering, Carbohydr. Polym., 230, 115658. https://doi.org/10.1016/j.carbpol.2019.115658

N.F.Huang, T.S.Zaitseva, M.V.Paukshto (2023) Biomedical applications of collagen, Bioengine-ering, 10, 90.

https://doi.org/10.3390/bioengineering10010090

C.E.Campiglio, N.Contessi Negrini, S.Farè, L.Draghi (2019) Cross-linking strategies for electrospun gelatin scaffolds, Materials, 12, 2476. https://doi.org/10.3390/ma12152476

C.Gonzalez-Obeso, E.J.Hartzell, R.A.Scheel, D.L.Kaplan (2023) Delivering on the promise of recombinant silk-inspired proteins for drug delivery, Adv. Drug Deliv. Rev., 192, 114622. https://doi.org/10.1016/j.addr.2022.114622

E.Chaabouni, F.Gassara, S.K.Brar (2014) Biopolymers synthesis and application, book Biotransformation Waste Biomass into High Value Biochem, Springer, New York, USA, p. 415-443.

F.Ebrahimi, H.Ramezani Dana (2022) Poly lactic acid (PLA) polymers: from properties to biomedical application, Int. J. Polym. Mater., 71, 1117-1130. https://doi.org/10.1080/00914037.2021.1944140

S.B.Park, E.Lih, K.S.Park, Y.K.Joung, D.K.Han (2017) Biopolymer-based functional composites for medical applications, Prog. Polym. Sci., 68, 77-105. https://doi.org/10.1016/j.progpolymsci.2016.12.003

P.R.F.Marcelino, F.Gonçalves, N.S.Aizawa, H.P.Pereira, T.M.Lacerda, S.S.da Silva (2021) Microbial biopolymers and their derivatives as nanotechnological tools for medicine: applications, advantages, toxicity, and safety, book Nanotechnology in medicine: toxicity and safety, Wiley-Blackwell, New Jersey, USA, p. 29-46.

D.A.Gregory, C.S.Taylor, A.T.Fricker, E.Asare, S.S.Tetali, J.W.Haycock, I.Roy (2022) Polyhydro-xyalkanoates and their advances for biomedical applications, Trends Mol. Med., 28, 331-342. https://doi.org/10.1016/j.molmed.2022.01.007

S.Mohapatra, D.Mohanty, S.Sharma, S.Dikshit, I.Kohli, D.P.Samantaray, M.Kathpalia (2021) Biomedical application of polymeric biomaterial: polyhydroxybutyrate, book Bioresource utilization and management: applications in therapeutics, biofuels, agriculture, and environmental science, CRC Press, USA, p. 111-124.

Q.Hu, Y.Lu, Y.Luo (2021) Recent advances in dextran-based drug delivery systems: from fabrication strategies to applications, Carbohydr. Polym., 264, 117999. https://doi.org/10.1016/j.carbpol.2021.117999

A.M.Díez-Pascual (2019) Synthesis and applica-tions of biopolymer composites, Int. J. Mol. Sci., 20, 2321. https://doi.org/10.3390/ijms20092321

R.Payal (2019) Reliable natural-fibre augmented biodegraded polymer composites, book Sustai-nable polymer composites and nanocomposites, Springer, Cham, p. 961-975.

B.Aaliya, K.V.Sunooj, M.Lackner (2021) Biopolymer composites: a review, Int. J. Biobased Plast., 3, 40-84.

https://doi.org/10.1080/24759651.2021.1881214

T.Gurunathan, S.Mohanty, S.K.Nayak (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Compos. Part A Appl. Sci. Manuf., 77, 1-25.

https://doi.org/10.1016/j.compositesa.2015.06.007

M.Okamoto, B.John (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds, Prog. Polym. Sci., 38, 1487-1503. https://doi.org/10.1016/j.progpolymsci.2013.06.001

X.Li, R.Cui, L.Sun, K.E.Aifantis, Y.Fan, Q.Feng, F.Cui, F.Watari (2014) 3D-printed biopolymers for tissue engineering application, Int. J. Polym. Sci., 2014, 829145. https://doi.org/10.1155/2014/829145

J.Tian, G.Yang, H.Huang, M.Liu, L.Liu, X.Zhang, Y.Wei (2020) Recent progress and development for the fabrication of antibacterial materials through mussel inspired chemistry, J. Environ. Chem. Eng., 8, 104383.

https://doi.org/10.1016/j.jece.2020.104383

M.S.Savelyev, A.Y.Gerasimenko, P.N.Vasilevsky, Y.O.Fedorova, T.Groth, G.N.Ten, D.V.Telyshev (2020) Spectral analysis combined with nonlinear optical measurement of laser printed biopolymer composites comprising chitosan/SWCNT, Anal. Biochem., 598, 113710. https://doi.org/10.1016/j.ab.2020.113710

S.Van Vlierberghe, P.Dubruel, E.Schacht (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review, Biomacro¬molecules, 12, 1387-1408. https://doi.org/10.1021/bm200083n

J.F.Pan, L.Yuan, C.A.Guo, X.H.Geng, T.Fei, W.S.Fan, S.Li, H.F.Yuan, Z.Q.Yan, X.M.Mo (2014) Fabrication of modified dextran–gelatin in situ forming hydrogel and application in cartilage tissue engineering, J.Mater.Chem. B, 2, 8346-8360. https://doi.org/10.1039/C4TB01221F

L.Dong, S.J.Wang, X.R.Zhao, Y.F.Zhu, J.K.Yu (2017) 3D-printed poly (ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering, Sci. Rep., 7, 13412. https://doi.org/10.1038/s41598-017-13838-7

I.Silvestro, I.Francolini, V.DiLisio, A.Martinelli, L.Pietrelli, A.Scottod’Abusco, A.Scoppio, A.Piozzi (2020) Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering, Materials, 13, 3577.

https://doi.org/10.3390/ma13163577

X.Z.Shu, Y.Liu, F.Palumbo, G.D.Prestwich (2003) Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth, Biomaterials, 24, 3825-3834. https://doi.org/10.1016/S0142-9612(03)00267-9

I.Noh, N.Kim, H.N.Tran, J.Lee, C.Lee (2019) 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering, Biomater. Res., 23, 1-9.

https://doi.org/10.1186/s40824-018-0152-8

P.Xiang, K.C.Wu, Y.Zhu, L.Xiang, C.Li, D.L.Chen, F.Chen, G.Xu, A.Wang, M.Li, Z.B.Jin (2014) A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells, Biomaterials, 35, 9777-9788. https://doi.org/10.1016/j.biomaterials.2014.08.040

X.Yang, Z.Lu, H.Wu, W.Li, L.Zheng, J.Zhao (2018) Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering, Mater. Sci. Eng. C, 83, 195-201. https://doi.org/10.1016/j.msec.2017.09.002

M.Salehi, Z.Bagher, S.K.Kamrava, A.Ehterami, R.Alizadeh, M.Farhadi, M.Falah, A.Komeili (2019) Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering, J. Cell. Physiol., 234, 15357-15368. https://doi.org/10.1002/jcp.28183

S.Kehoe, X.F.Zhang, D.Boyd (2012) FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy, Injury, 43, 553-572. https://doi.org/10.1016/j.injury.2010.12.030

M.Nevins, M.L.Nevins, M.Camelo, J.M.Camelo, P.Schupbach, D.M.Kim (2010) The clinical efficacy of dynamatrix extracellular membrane in augmenting keratinized tissue, Int. J. Periodontics Restor. Dent., 30, 151-161.

M.A.Erb, T.Claus, M.Hartrumpf, S.Bachmann, J.M.Albes (2009) The use of tachosil surgical patch or fibrin glue in coronary artery surgery does not affect quality of anastomosis or provoke postoperative adhesions in pigs, Eur. J. Cardiothorac. Surg., 36, 703-707. https://doi.org/10.1016/j.ejcts.2009.04.028

M.Young, E.Bond, G.Bowen, P.Chadwick, J.McCardle, A.McInnes, D.Stang, L.Watret (2010) Consensus statement on the use of xelma in diabetic foot ulcers, The Diabetic Foot, 13, 148-151.

A.A.Omar, A.I.D.Mavor, A.M.Jones, S.Homer-Vanniasinkam (2004) Treatment of venous leg ulcers with dermagraft®, Eur. J. Vasc. Endovasc. Surg., 27, 666-672. https://doi.org/10.1016/j.ejvs.2004.03.001

C.E.Hart, A.Loewen-Rodriguez, J.Lessem (2012) Dermagraft: use in the treatment of chronic wounds, Adv. Wound Care, 1, 138-141. https://doi.org/10.1089/wound.2011.0282

D.Fivenson, L.Scherschun (2003) Clinical and economic impact of apligraf® for the treatment of non-healing venous leg ulcers, Int. J. Dermatol., 42, 960-965. https://doi.org/10.1111/j.1365-4632. 2003.02039.x

S.Hu, R.S.Kirsner, V.Falanga, T.Phillips, W.H. Eaglstein (2006) Evaluation of apligraf® persistence and basement membrane restoration in donor site wounds: a pilot study, Wound Repair Regen., 14, 427-433.

https://doi.org/10.1111/j.1743-6109.2006.00148.x

C.N.Ellis (2010) Outcomes with the use of bioprosthetic grafts to reinforce the ligation of the intersphincteric fistula tract (biolift procedure) for the management of complex anal fistulas, Dis. Colon Rectum, 53, 1361-1364.

https://doi.org/10.1007/DCR.0b013e3181ec4470

R.D.Guyer, S.G.Tromanhauser, J.J.Regan (2007) An economic model of one-level lumbar arthroplasty versus fusion, Spine J. Off. J. N. Am. Spine Soc., 7, 558-562. https://doi.org/10.1016/j.spinee.2006.09.006

P.L.J.Tan (2010) Company profile: tissue regeneration for diabetes and neurological diseases at living cell technologies, Regen.Med., 5, 181-187. https://doi.org/10.2217/rme.10.4

A.K.Wise, J.B.Fallon, A.J.Neil, L.N.Pettingill, M.S.Geaney, S.J.Skinner, R.K.Shepherd (2011) Combining cell-based therapies and neural prostheses to promote neural survival, Neurotherapeutics, 8, 774-787.

https://doi.org/10.1007/s13311-011-0070-0

F.E.Van Goethem, N.Adriaens, F.Alepee, B. Straube, M.De Wever, S.Cappadoro, E.Catoire, E. Hansen, A.Wolf, P.Vanparys (2006) Prevalidation of a new in vitro reconstituted human cornea model to assess the eye irritating potential of chemicals, Toxicol. In Vitro, 20, 1-17. https://doi.org/10.1016/j.tiv.2005.05.002

J.Jacob, J.T.Haponiuk, S.Thomas, S.Gopi (2018) Biopolymer based nanomaterials in drug delivery systems: a review, Mater. Today Chem., 9, 43-55. https://doi.org/10.1016/j.mtchem.2018.05.002

S.Gopi, A.Amalraj, N.P.Sukumaran, J.T.Haponiuk, S.Thomas (2018) Biopolymers and their compo-sites for drug delivery: a brief review, Macromol. Symp., 380, 1800114. https://doi.org/10.1002/masy.201800114

H.Betre, W.Liu, M.R.Zalutsky, A.Chilkoti, V.B. Kraus, L.A.Setton (2006) A thermally responsive biopolymer for intra-articular drug delivery, J.Control.Release, 115, 175-182. https://doi.org/10.1016/j.jconrel.2006.07.022

G.V.Patil (2003) Biopolymer albumin for diagnosis and in drug delivery, Drug Dev. Res., 58, 219-247. https://doi.org/10.1002/ddr.10157

A.Müller, Z.Ni, N.Hessler, F.Wesarg, F.A.Müller, D.Kralisch, D.Fischer (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin, J. Pharm. Sci., 102, 579-592. https://doi.org/10.1002/jps.23385

D.Das, S.Pal (2015) Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery, RSC Adv., 5, 25014-25050. https://doi.org/10.1039/C4RA16103C

G.Ren, C.Clancy, T.M.Tamer, B.Schaller, G.M. Walker, M.N.Collins (2019) Cinnamyl O-amine functionalized chitosan as a new excipient in direct compressed tablets with improved drug delivery, Int. J. Biol. Macromol., 141, 936-946. https://doi.org/10.1016/j.ijbiomac.2019.08.265

M.C.G.Pellá, A.R.Simão, M.K.Lima-Tenório, E.Tenório-Neto, D.B.Scariot, C.V.Nakamura, A.F. Rubira (2020) Chitosan hybrid microgels for oral drug delivery, Carbohydr. Polym., 239, 116236. https://doi.org/10.1016/j.carbpol.2020.116236

N.V.Dubashynskaya, A.S.Golovkin, I.V.Kudryavt-sev, S.S.Prikhodko, A.S.Trulioff, A.N.Bokatyi, D.N.Poshina, S.V.Raik, Y.A.Skorik (2020) Mucoadhesive cholesterol-chitosan self-assembled particles for topical ocular delivery of dexamethasone, Int. J. Biol. Macromol., 158, 811-818. https://doi.org/10.1016/j.ijbiomac.2020.04.251

H.M.Eid, I.A.Naguib, R.I.Alsantali, I.Alsalahat, A.M. Hegazy (2021) Novel chitosan-coated niosomal formulation for improved management of bacterial conjunctivitis: a highly permeable and efficient ocular nanocarrier for azithromycin, J. Pharm. Sci., 110, 3027-3036. https://doi.org/10.1016/j.xphs.2021.04.020

J.G.Rosch, H.Winter, A.N.DuRoss, G.Sahay, C. Sun (2019) Inverse-micelle synthesis of doxo-rubicin-loaded alginate/chitosan nanoparticles and in vitro assessment of breast cancer cytotoxicity, Colloids Interface Sci. Commun., 28, 69-74. https://doi.org/10.1016/j.colcom.2018.12.002

T.Nalini, S.K.Basha, A.M.M.Sadiq, V.S.Kumari, K.Kaviyarasu (2019) Development and chara-cterization of alginate/chitosan nanoparticulate system for hydrophobic drug encapsulation, J. Drug Deliv. Sci. Technol., 52, 65-72. https://doi.org/10.1016/j.jddst.2019.04.002

J.A.deLima, T.C.Paines, M.H.Motta, W.B.Weber, S.S.DosSantos, L.Cruz, C.D.B.daSilva (2017) Novel pemulen/pullulan blended hydrogel containing clotrimazole-loaded cationic nano-capsules: evaluation of mucoadhesion and vaginal permeation, Mater. Sci. Eng. C, 79, 886-893. https://doi.org/10.1016/j.msec.2017.05.030

J.K.Jackson, K.Letchford, B.Z.Wasserman, L.Ye, W.Y.Hamad, H.M.Burt (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs, Int. J. Nanomed., 6, 321-330. https://doi.org/10.2147/IJN.S16749

R.Rebelo, M.Fernandes, R.Fangueiro (2017) Biopolymers in medical implants: a brief review, Procedia Eng., 200, 236-243. https://doi.org/10.1016/j.proeng.2017.07.034

T.Romasco, P.M.Mandrillo, E.Morsut, M.Tumedei, D.Mandatori, M.Petrini, M.C.Curia, F.DeAngelis, C.D’Arcangelo, A.Piattelli, N.DiPietro (2023) Morpho-functional effect of a new collagen-based medical device on human gingival fibroblasts: an in vitro study, Biomedicines, 11, 786. https://doi.org/10.3390/biomedicines11030786

K.Kaur, S.Sa'Paiva, D.Caffrey, B.L.Cavanagh, C.M.Murphy (2021) Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone, Mater. Sci. Eng. C, 128, 112340.https://doi.org/10.1016/j.msec.2021.112340

X.Y.Li, W.S.Deng, Z.Q.Wang, Z.C.Li, S.L.Chen, Z.Song, Q.Zhang, J.Liang, X.Y.Chen (2023) Injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells promotes functional recovery in patients with spontaneous intracerebral hemorrhage: phase I clinical trial, Neural Regen. Res., 18, 1999-2004.

https://doi.org/10.4103/1673-5374.366489

A.A.Barros, C.Oliveira, E.Lima, A.R.C.Duarte, R.L.Reis (2016) Gelatin-based biodegradable ureteral stents with enhanced mechanical properties, Appl. Mater. Today, 5, 9-18. https://doi.org/10.1016/j.apmt.2016.07.006

D.S.Grover, W.J.Flynn, K.P.Bashford, R.A.Lewis, Y.J.Duh, R.S.Nangia, B.Niksch (2017) Performance and safety of a new ab interno gelatin stent in refractory glaucoma at 12 months, Am. J. Opthalmol., 183, 25-36.

https://doi.org/10.1016/j.ajo.2017.07.023

M.Hasan, N.Al-Ghaban (2017) The effects of hyaluronic acid on bone-implant interface in RABBITS (immunohistochemical study for TNF-α), Int. J. Adv. Biotech. Res., 7, 733-738.

J.T.Kim, D.Y.Lee, E.J.Kim, J.W.Jang, N.I.Cho (2014) Tissue response to implants of hyaluronic acid hydrogel prepared by microbeads, J. Tissue Eng. Regen. Med., 11, 32-38. https://doi.org/10.1007/s13770-013-1106-9

H.A.Alhadrami (2018) Biosensors: classifications, medical applications, and future prospective, Biotechnol. Appl. Biochem., 65, 497-508. https://doi.org/10.1002/bab.1621

A.Bruinink (2018) Biosensor-bearing wound dressings for continuous monitoring of hard-to-heal wounds: now and next, J. Biosens. Bioelectron., 2018, 1-19. https://doi.org/10.29011/BBOA-117. 100017

S.H.Lu, M.Samandari, C.Li, H.Li, D.Song, Y.Zhang, A.Tamayol, X.Wang (2022) Multimodal sensing and therapeutic systems for wound healing and management: a review, Sens. Actuators Rep., 4, 100075. https://doi.org/10.1016/j.snr.2022.100075

T.A.Khattab, S.Dacrory, H.Abou-Yousef, S.Kamel (2019) Development of microporous cellulose-based smart xerogel reversible sensor via freeze drying for naked-eye detection of ammonia gas, Carbohydr. Polym., 210, 196-203. https://doi.org/10.1016/j.carbpol.2019.01.067

M.R.Thalji, A.A.Ibrahim, K.F.Chong, A.V.Soldatov, G.A.Ali (2022) Glycopolymer-based materials: synthesis, properties, and biosensing applications, Top. Curr. Chem., 380, 45. https://doi.org/10.1007/s41061-022-00395-5

S.Yu, L.Ding, H.Lin, W.Wu, J.Huang (2019) A novel optical fiber glucose biosensor based on carbon quantum dots-glucose oxidase/cellulose acetate complex sensitive film, Biosens. Bioelectron., 146, 111760.

https://doi.org/10.1016/j.bios.2019.111760

J.V.Edwards, N.T.Prevost, A.D.French, M.Concha, B.D.Condon (2015) Kinetic and structural analysis of fluorescent peptides on cotton cellulose nanocrystals as elastase sensors, Carbohydr. Polym., 116, 278-285.

https://doi.org/10.1016/j.carbpol.2014.04.067

L.Madej-Kiełbik, K.Gzyra-Jagieła, J.Jóźwik-Pruska, R.Dziuba, A.Bednarowicz (2022) Biopolymer composites with sensors for environmental and medical applications, Materials, 15, 7493. https://doi.org/10.3390/ma15217493

S.Alharthi, M.E.El-Naggar, M.A.Abu-Saied, T.A.Khattab, D.I.Saleh (2022) Preparation of biosensor based on triarylmethane loaded cellulose acetate xerogel for the detection of urea, Mater. Chem. Phys., 276, 125377.

https://doi.org/10.1016/j.matchemphys.2021.125377

S.Lee, K.Gwon, H.Kim, B.J.Park, J.H.Shin (2022) High-performance amperometric carbon monoxide sensor based on a xerogel-modified PtCr/C microelectrode, Sens. Actuator B Chem., 369, 132275. https://doi.org/10.1016/j.snb.2022.132275

X.Li, Q.Feng, K.Lu, J.Huang, Y.Zhang, Y.Hou, H.Qiao, D.Li, Q.Wei (2021) Encapsulating enzyme into metal-organic framework during in-situ growth on cellulose acetate nanofibers as self-powered glucose biosensor, Biosens. Bioelectron., 171, 112690. https://doi.org/10.1016/j.bios.2020.112690

S.Ranjbar, S.Shahrokhian (2018) Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus, Bioelec¬trochem., 123, 70-76. https://doi.org/10.1016/j.bioelechem.2018.04.018

M.Benkő, N.Varga, D.Sebők, G.Bohus, Á.Juhász, I.Dékány (2015) Bovine serum albumin-sodium alkyl sulfates bioconjugates as drug delivery systems, Colloids Surf. B Biointerfaces, 130, 126-132. https://doi.org/10.1016/j.colsurfb.2015.04.018

N.Taneja, K.K.Singh (2018) Rational design of polysorbate 80 stabilized human serum albumin nanoparticles tailored for high drug loading and entrapment of irinotecan, Int. J. Pharm., 536, 82-94. https://doi.org/10.1016/j.ijpharm.2017.11.024

Y.Shtenberg, M.Goldfeder, H.Prinz, J.Shainsky, Y.Ghantous, I.A.El-Naaj, A.Schroeder, H.Bianco-Peled (2018) Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery, Int. J. Biol. Macromol., 111, 62-69. https://doi.org/10.1016/j.ijbiomac.2017.12.137

K.S.Joshy, M.A.Susan, S.Snigdha, K.Nandakumar, A.P.Laly, T.Sabu (2018) Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery, Int. J. Biol. Macromol., 107, 929-937. https://doi.org/10.1016/j.ijbiomac.2017.09.078

L.Dai, C.L.Si (2017) Cellulose-graft-poly (methyl methacrylate) nanoparticles with high biocompatibility for hydrophobic anti-cancer drug delivery, Mater. Lett., 207, 213-216. https://doi.org/10.1016/j.matlet.2017.07.090

A.Solanki, S.Thakore (2015) Cellulose crosslinked pH-responsive polyurethanes for drug delivery: α-hydroxy acids as drug release modifiers, Int. J. Biol. Macromol., 80, 683-691. https://doi.org/10.1016/j.ijbiomac.2015.07.003

R.de Oliveira Pedro, F.M.Goycoolea, S.Pereira, C.C.Schmitt, M.G.Neumann (2018) Synergistic effect of quercetin and pH-responsive DEAE-chitosan carriers as drug delivery system for breast cancer treatment, Int. J. Biol. Macromol., 106, 579-586. https://doi.org/10.1016/j.ijbiomac.2017.08.056

K.M.Rao, A.Kumar, M.Suneetha, S.S.Han (2018) pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery, Int.J.Biol.Macromol., 112, 119-125. https://doi.org/10.1016/j.ijbiomac.2018.01.163

G.Voicu, R.E.Geanaliu-Nicolae, A.A.Pîrvan, E.Andronescu, F.Iordache (2016) Synthesis, characterization and evaluation of drug-collagen hybrid materials for biomedical applications, Int.J.Pharm., 510, 474-484.

https://doi.org/10.1016/j.ijpharm.2015.11.054

A.Y.Lee, N.Mahler, C.Best, Y.U.Lee, C.K.Breuer (2014) Regenerative implants for cardiovascular tissue engineering, Transl. Res., 163, 321-341.

https://doi.org/10.1016/j.trsl.2014.01.014

G.T.Tihan, C.Ungureanu, R.C.Barbaresso, R.G.Zgârian, I.Rău, A.Meghea, M.G.Albu, M.V. Ghica (2015) Chloramphenicol collagen sponges for local drug delivery in dentistry, Comptes Rendus Chimie, 18, 986-992.

https://doi.org/10.1016/j.crci.2015.06.004

N.Mizutani, S.Kageyama, M.Yamada, M. Hasegawa, K.Miyamoto, T.Horiuchi (2014) The behavior of ligament cells cultured on elastin and collagen scaffolds, J. Artif. Organs, 17, 50-59. https://doi.org/10.1007/s10047-013-0736-y

A.Rogina (2014) Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery, Appl. Surf. Sci., 296, 221-230.

https://doi.org/10.1016/j.apsusc.2014.01.098

P.D.Ward, S.L.Thibeault, S.D.Gray (2002) Hyalu-ronic acid: its role in voice, J. Voice, 16, 303-309. https://doi.org/10.1016/S0892-1997(02)00101-7

A.J.R.Lasprilla, G.A.R.Martinez, B.H.Lunelli, A.L. Jardini, R.M.Filho (2012) Polylactic acid synthesis for application in biomedical devices—a review, Biotechnol. Adv., 30, 321-328.

https://doi.org/10.1016/j.biotechadv.2011.06.019

B.Tyler, D.Gullotti, A.Mangraviti, T.Utsuki, H.Brem (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications, Adv. Drug Deliv. Rev., 107, 163-175.

https://doi.org/10.1016/j.addr.2016.06.018

M.T.Khorasani, S.A.Mirmohammadi, S.Irani (2011) Polyhydroxybutyrate (PHB) scaffolds as a model for nerve tissue engineering application: fabrication and in vitro assay, Int.J.Polym.Mater., 60, 562-575. https://doi.org/10.1080/00914037.2010.531809

G.Uzun, D.Aydemir (2017) Biocomposites from polyhydroxybutyrate and bio-fillers by solvent casting method, Bull.Mater.Sci., 40, 383-393. https://doi.org/10.1007/s12034-017-1371-7

H.Xiao, T.Yang, Q.Lin, G.Q.Liu, L.Zhang, F.Yu, Y.Chen (2016) Acetylated starch nanocrystals: preparation and antitumor drug delivery study, Int. J. Biol. Macromol., 89, 456-464.

https://doi.org/10.1016/j.ijbiomac.2016.04.037

D.LeCorre, J.Bras, A.Dufresne (2010) Starch nanoparticles: a review, Biomacromolecules, 11, 1139-1153. https://doi.org/10.1021/bm901428y

Z.Li, H.R.Ramay, K.D.Hauch, D.Xiao, M.Zhang (2005) Chitosan–alginate hybrid scaffolds for bone tissue engineering, Biomaterials, 26, 3919-3928. https://doi.org/10.1016/j.biomaterials.2004.09.062

Y.C.Kuo, C.C.Lin (2013) Accelerated nerve regeneration using induced pluripotent stem cells in chitin–chitosan–gelatin scaffolds with inverted colloidal crystal geometry, Colloids Surf. B Biointerfaces, 103, 595-600.

https://doi.org/10.1016/j.colsurfb.2012.11.001

X.Yu, A.Bichtelen, X.Wang, Y.Yan, F.Lin, Z.Xiong, R.Wu, R.Zhang, Q.Lu (2005) Collagen/chito-san/heparin complex with improved biocompatibility for hepatic tissue engineering, J.Bioact.Compat. Polym., 20, 15-28.

https://doi.org/10.1177/0883911505049653

K.Xu, D.A.Cantu, Y.Fu, J.Kim, X.Zheng, P.Hematti, W.J.Kao (2013) Thiol-ene Michael-type formation of gelatin/poly (ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds, Acta Biomater., 9, 8802-8814. https://doi.org/10.1016/j.actbio.2013.06.021

S.P.Hoerstrup, R.Sodian, S.Daebritz, J.Wang, E.A. Bacha, D.P.Martin, A.M.Moran, K.J.Guleserian, J.S.Sperling, S.Kaushal, J.P.Vacanti, F.J.Schoen, J.E.Mayer (2000) Functional living trileaflet heart valves grown in vitro, Circulation, 102, III-44-III-49. https://doi.org/10.1161/circ.102.suppl_3.III-44

S.Kulkarni Vishakha, D.Butte Kishor, S.Rathod Sudha (2012) Natural polymers, a comprehensive review, Int. J. Res. Pharm. Biomed. Sci., 3, 1597-1613.

X.Tong, W.Pan, T.Su, M.Zhang, W.Dong, X.Qi (2020) Recent advances in natural polymer-based drug delivery systems, React. Funct. Polym., 148, 104501. https://doi.org/10.1016/j.reactfunctpolym.2020.104501

E.Güncüm, N.Icsiklan, C.Anlacs, N.Ünal, E.Bulut, T.Bakirel (2018) Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin-an antimicrobial drug, Artif. Cells Nanomed. Biotechnol., 46, 964-973. https://doi.org/10.1080/21691401.2018.1476371

K.C.Panigrahi, C.N.Patra, G.K.Jena, D.Ghose, J.Jena, S.K.Panda, M.Sahu (2018) Gelucire: a versatile polymer for modified release drug delivery system, Future J. Pharm. Sci., 4, 102-108. https://doi.org/10.1016/j.fjps.2017.11.001

B.A.Lodhi, M.A.Hussain, M.Sher, M.T.Haseeb, M.U.Ashraf, S.Z.Hussain, I.Hussain, S.N.A.Bukhari (2019) Polysaccharide-based super-porous, superabsorbent, and stimuli responsive hydrogel from sweet basil: a novel material for sustained drug release, Adv. Polym. Technol., 2019, 1-11. https://doi.org/10.1155/2019/9583516

T.Bibire, O.Yilmaz, C.M.Ghiciuc, N.Bibire, R.Dănilă (2022) Biopolymers for surgical applications, Coatings, 12, 211. https://doi.org/10.3390/coatings12020211

M.C.Biswas, B.Jony, P.K.Nandy, R.Chowdhury, S.Halder, D.Kumar, S.Ramakrishna, M.Hassan, M.A.Ahsan, M.E.Hoque, M.A.Imam (2022) Recent advancement of biopolymers and their potential biomedical applications, J. Polym. Environ., 30, 51-74. https://doi.org/10.1007/s10924-021-02199-y

N.Zabihollahi, A.Alizadeh, H.Almasi, S.Hanifian, H.Hamishekar (2020) Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension, Int.J.Biol.Macromol., 160, 409-417. https://doi.org/10.1016/j.ijbiomac.2020.05.066

R.Gheorghita, L.Anchidin-Norocel, R.Filip, M. Dimian, M.Covasa (2021) Applications of biopoly-mers for drugs and probiotics delivery, Polymers, 13, 2729. https://doi.org/10.3390/polym13162729

P.C.Pires, F.Mascarenhas-Melo, K.Pedrosa, D. Lopes, J.Lopes, A.M.M.Soares, D.Peixoto, P. Giram, F.J.B.Veiga, A.C.Paiva-Santos (2023) Polymer-based biomaterials for pharmaceutical and biomedical applications: a focus on topical drug administration, Eur. Polym. J., 18, 111868. https://doi.org/10.1016/j.eurpolymj.2023.111868

Downloads

Published

15-12-2024

Issue

Section

Scientific paper