Bacillus amyloliquefaciens strain NSB4 bacteria for treating wastewater for fuel cell application
DOI:
https://doi.org/10.62638/ZasMat1194Keywords:
Microbial fuel cells, Mediator-free MFC, Separator, Biofilm, Waste-water treatmentAbstract
Pollutants in water bodies come from a variety of sources, including but not limited to domestic, industrial, municipal etc. Water contamination and energy shortages are global problems that require significant attention. Therefore, it is essential to synthesize sustainable energy and transport waste-free water to the water reception points. Concerns about energy shortages and water contamination have prompted the development of microbial fuel cell technology. Microorganisms are used by electrochemical cell nature of MFCs to anaerobically digest the organic wastes and produce energy. Focusing on a single-chambered mediator-less MFCs operating in batch mode, this study assesses the efficacy of a novel bacterial strain Bacillus amyloliquefaciens NSB4, as an exoelectrogen in terms of electricity yield and waste elimination. Results from the strain's electrochemical characterisation showed a maximum current density of 0.4804 A/m2 and a power density of 41.281 mW/m2. Additionally, the columbic efficiency (72%) and COD reduction efficiency (90.46%) were also remarkably high. Growth of the anodic biofilm during the MFC process displayed the crucial performance of the exoelectrogen used. SEM images of the biofilm are also presented in the study.
References
J.K. Pandey, S.M. Tauseef, S. Manna, R.K. Patel, V. K. Singh, A. Dasgotra (2024) Application of Nanotechnology for Resource Recovery from Wastewater. Journal of Environmental Management, 320, 112916,
https://doi.org/10.1016/j.jenvman.2022.112916
H. Liu, R. Ramnarayanan, B.E. Logan (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38(7), 2281–2285,
https://doi.org/10.1021/es034923g
H. Wang, Z.J. Ren (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796–1807,
https://doi.org/10.1016/j.biotechadv.2013.09.005
M. Kronenberg, E. Trably, N. Bernet, D. Patureau (2017) Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. Environmental Pollution, 231, 509–523,
https://doi.org/10.1016/j.envpol.2017.08.064
A. T. Hoang, S. Nižetić, K. H. Ng, A. M. Papadopoulos, A. T. Le, S. Kumar, H. Hadiyanto (2022) Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere, 287, 132285,
https://doi.org/10.1016/j.chemosphere.2021.132285
S. D. Kumar, M. Yasasve, G. Karthigadevi, M. Aashabharathi, R. Subbaiya, N. Karmegam, M. Govarthanan (2022) Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: Trends and applications-a review. Chemosphere, 287, 132439,
https://doi.org/10.1016/j.chemosphere.2021.132439
W. Wang, Q. Zhao, J. Ding, K. Wang, J. Jiang (2021) Development of an MFC-powered BEF system with novel Fe–Mn–Mg/CF composite cathode to degrade refractory pollutants. Journal of Cleaner Production, 326, 129348,
https://doi.org/10.1016/j.jclepro.2021.129348
J. Li, R. M. Ziara, S. Li, J. Subbiah, B. I. Dvorak (2020) Understanding the sustainability niche of continuous flow tubular microbial fuel cells on beef packing wastewater treatment. Journal of Cleaner Production, 257, 120555,
https://doi.org/10.1016/j.jclepro.2020.120555
S. V. Mohan, G. Velvizhi, J. A. Modestra, S. Srikanth (2014). Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews, 40, 779–797, https://doi.org/10.1016/j.rser.2014.07.145
A. ElMekawy, S. Srikanth, S. Bajracharya, H. M. Hegab, P. S. Nigam, A. Singh, S. V. Mohan, D. Pant (2015) Food and agricultural wastes as substrates for bioelectrochemical system (BES): The synchronized recovery of sustainable energy and waste treatment. Food Research International, 73, 213–225,
https://doi.org/10.1016/j.foodres.2015.04.026
S. Sevda, X. Dominguez-Benetton, K. Vanbroekhoven, H. De Wever, T. Sreekrishnan, D. Pant (2013) High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Applied Energy, 105, 194–206,
https://doi.org/10.1016/j.apenergy.2013.01.020
D. R. Lovley (2006) Microbial fuel cells: Novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology, 17(3), 327–332,
https://doi.org/10.1016/j.copbio.2006.04.006
Evelyn, Y. Li, A. Marshall, P. A. Gostomski (2014) Gaseous pollutant treatment and electricity generation in microbial fuel cells (MFCs) utilising redox mediators. Reviews in Environmental Science and Bio/Technology, 13, 35–51,
https://doi.org/10.1007/s11157-013-9311-0
G. D. Saratale, R. G. Saratale, M. K. Shahid, G. Zhen, G. Kumar, H. S. Shin, Y.G. Choi, S. H. Kim (2017) A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere, 178, 534–547,
https://doi.org/10.1016/j.chemosphere.2017.03.074
Y. Guo, J. Wang, S. Shinde, X. Wang, Y. Li, Y. Dai, J. Ren, P. Zhang, X. Liu (2020) Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: An update on the biocatalysts. RSC Advances, 10(43), 25874–25887,
https://doi.org/10.1039/D0RA05385F
A. Vijay, M. Chhabra, T. Vincent (2019) Microbial community modulates electrochemical performance and denitrification rate in a biocathodic autotrophic and heterotrophic denitrifying microbial fuel cell. Bioresource Technology, 272, 217–225,
https://doi.org/10.1016/j.biortech.2018.09.043
A. Vempaty, A. S. Mathuriya (2023) Strategic development and performance evaluation of functionalized tea waste ash-clay composite as low-cost, high-performance separator in microbial fuel cell. Environmental Technology, 44(18), 2713–2724, https://doi.org/10.1080/09593330.2021.2009072
Y. Manjrekar, S. Kakkar, A. Durve-Gupta (2018) Bio-electricity generation using kitchen waste and molasses powered MFC. IJSRSET, 5(4), 181–187.
J. Prasad, R. K. Tripathi (2017) Maximum electricity generation from low-cost sediment microbial fuel cell using copper and zinc electrodes. 1–4.
A. Hatamian-Zarmi, S. A. Shojaosadati, E. Vasheghani-Farahani, S. Hosseinkhani, A. Emamzadeh (2009) Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils. International Biodeterioration & Biodegradation, 63(6), 788–794, https://doi.org/10.1016/j.ibiod.2009.03.002
R. Patel, D. Deb, R. Dey, E. Balas (2020) Microbial fuel cell laboratory setup. In V. E. Balas (Ed.), Adaptive and Intelligent Control of Microbial Fuel Cells (pp. 99–108). Springer,
https://doi.org/10.1007/978-3-030-46539-7_6
A. Malyan, G. Mongia, S. Kumar (2022) Catalytic effect of acetate (C2H3O2) on coulombic efficiency and bio-electricity generation from wastewater sample prepared from domestic kitchen waste using dual chamber microbial fuel cell technology. Journal of Applied and Natural Science, 14(2), 652–659,
https://doi.org/10.31018/jans.v14i2.3493
W. Chen, Z. Liu, Y. Li, X. Xing, Q. Liao, X. Zhu (2021) Improved electricity generation, coulombic efficiency and microbial community structure of microbial fuel cells using sodium citrate as an effective additive. Journal of Power Sources, 482, 228947, https://doi.org/10.1016/j.jpowsour.2020.228947
A. E. Greenberg, R. R. Trussell, L. S. Clesceri (1985) Standard methods for the examination of water and wastewater (16th ed.). American Public Health Association.
B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40(17), 5181–5192,
https://doi.org/10.1021/es0605016
A. Genge, R. Khade (2019) Isolation and screening of exoelectrogenic bacteria from wastewater. [Conference presentation],
https://doi.org/10.1016/j.watres.2019.04.001
Y. Cao, H. Mu, W. Liu, R. Zhang, J. Guo, M. Xian, H. Liu (2019) Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities. Microbial Cell Factories, 18(1), 1–14,
https://doi.org/10.1186/s12934-019-1153-2
R. M. Allen, H. P. Bennetto (1993) Microbial fuel-cells: Electricity production from carbohydrates. Applied Biochemistry and Biotechnology, 39(1), 27–40,
https://doi.org/10.1007/BF02918939
Z. Nazeer, E. Y. Fernando (2022) A novel growth and isolation medium for exoelectrogenic bacteria. Enzyme and Microbial Technology, 155, 109995,
https://doi.org/10.1016/j.enzmictec.2022.109995
B. Thulasinathan, S. Nainamohamed, J. O. E. Samuel, S. Soorangkattan, J. Muthuramalingam, M. Kulanthaisamy, R. Balasubramani, D. D. Nguyen, S. W. Chang, N. Bolan (2019) Comparative study on Cronobacter sakazakii and Pseudomonas otitidis isolated from septic tank wastewater in microbial fuel cell for bioelectricity generation. Fuel, 248, 47–55,
https://doi.org/10.1016/j.fuel.2019.03.057
Y. Li, G. Gu, J. Zhao, H. Yu, Y. Qiu, Y. Peng (2003) Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen. Chemosphere, 52(6), 997–1005,
https://doi.org/10.1016/S0045-6535(03)00318-2
C. Wang, J. Shen, Q. Chen, D. Ma, G. Zhang, C. Cui, Y. Xin, Y. Zhao, C. Hu (2020) The inhibiting effect of oxygen diffusion on the electricity generation of three-chamber microbial fuel cells. Journal of Power Sources, 453, 227889
https://doi.org/10.1016/j.jpowsour.2020.227889
F. L. Torto, M. Relucenti, G. Familiari, N. Vaia, F. Marinozzi, F. Bini, I. Fratoddi, F. Sciubba, R. Cassese, V. Tombolini (2018) The effect of postmastectomy radiation therapy on breast implants. [Conference presentation],
https://doi.org/10.1016/j.radonc.2018.08.008
M. Relucenti, S. Miglietta, G. Bove, O. Donfrancesco, E. Battaglione, P. Familiari, C. Barbaranelli, E. Covelli, M. Barbara, G. Familiari (2020) SEM BSE 3D image analysis of human incus bone affected by cholesteatoma ascribes to osteoclasts the bone erosion and VpSEM dEDX analysis reveals new bone formation. Scanning, 2020, https://doi.org/10.1155/2020/5847982
M. Relucenti, S. Miglietta, E. Covelli, P. Familiari, E. Battaglione, G. Familiari, M. Barbara (2019) Ciliated cell observation by SEM on the surface of human incudo-malleolar-joint articular cartilage: Are they a new chondrocyte phenotype? Acta Oto-Laryngologica, 139(5), 439–443,
https://doi.org/10.1080/00016489.2019.1582341
G. M. F. Pierangeli, R. A. Ragio, R. F. Benassi, G. B. Gregoracci, E. L. Subtil (2021) Pollutant removal, electricity generation and microbial community in an electrochemical membrane bioreactor during co-treatment of sewage and landfill leachate. Journal of Environmental Chemical Engineering, 9(5), 106205,
https://doi.org/10.1016/j.jece.2021.106205
T. Atnafu, S. Leta (2021) Developing and optimization of fragmented electroactive biofilm reactor (FAB) to increase microbial fuel cell bioelectricity generation and treatment performance. [Conference presentation], https://doi.org/10.1016/j.jece.2021.106205
H. Khandelwal, S. Mutyala, M. Kim, Y. E. Song, S. Li, M. Jang, S. E. Oh, J. R. Kim (2022) Colorimetric isolation of a novel electrochemically active Pseudomonas strain using tungsten nanorods for bioelectrochemical applications. Bioelectrochemistry, 146, 108136, https://doi.org/10.1016/j.bioelechem.2022.108136
S. Tarasov, Y. Plekhanova, V. Kashin, P. Gotovtsev, M. A. Signore, L. Francioso, V. Kolesov, A. Reshetilov (2022). Gluconobacter oxydans-based MFC with PEDOT: PSS/Graphene/Nafion bioanode for wastewater treatment. Biosensors, 12(9), 699, https://doi.org/10.3390/bios12090699
S. M. Daud, W. R. W. Daud, M. H. A. Bakar, B. H. Kim, M. R. Somalu, A. Muchtar, J. M. Jahim, S. Muhammed Ali (2020) Low-cost novel clay earthenware as separator in microbial electrochemical technology for power output improvement. Bioprocess and Biosystems Engineering, 43, 1369–1379, https://doi.org/10.1007/s00449-020-02344-0
A. Ilshadsabah, T. Suchithra (2022) Identification of novel potent biocatalysts, Bacillus thuringiensis STV1324a, Bacillus aquimaris STV1324b, and effective augmentation in a bioelectrochemical system for green energy production. Cleaner Engineering and Technology, 11, 100580, https://doi.org/10.1016/j.clet.2022.100580
K. Becerril-Varela, J. H. Serment-Guerrero, G. L. Manzanares-Leal, N. Ramírez-Durán, C. Guerrero-Barajas (2021) Generation of electrical energy in a microbial fuel cell coupling acetate oxidation to Fe3+ reduction and isolation of the involved bacteria. World Journal of Microbiology and Biotechnology, 37(6), 104, https://doi.org/10.1007/s11274-021-03058-1
C. Amanze, X. Zheng, M. Man, Z. Yu, C. Ai, X. Wu, S. Xiao, M. Xia, R. Yu, X. Wu (2022) Recovery of heavy metals from industrial wastewater using bioelectrochemical system inoculated with novel Castellaniella species. Environmental Research, 205, 112467, https://doi.org/10.1016/j.envres.2022.112467
Y. Qu, Y. Feng, X. Wang, B. E. Logan (2012) Use of a coculture to enable current production by Geobacter sulfurreducens. Applied and Environmental Microbiology, 78(9), 3484–3487, https://doi.org/10.1128/AEM.06960-11
S. Schmitz, M. A. Rosenbaum (2018) Boosting mediated electron transfer in bioelectrochemical systems with tailored defined microbial cocultures. Biotechnology and Bioengineering, 115(9), 2183–2193, https://doi.org/10.1002/bit.26708
M. A. Islam, H. R. Ong, B. Ethiraj, C. K. Cheng, M. M. R. Khan (2018) Optimization of co-culture inoculated microbial fuel cell performance using response surface methodology. Journal of Environmental Management, 225, 242–251,
https://doi.org/10.1016/j.jenvman.2018.07.097
Z. Ren, T. E. Ward, J. M. Regan (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environmental Science & Technology, 41(13), 4781–4786,
https://doi.org/10.1021/es070577h
T. Lin, X. Bai, Y. Hu, B. Li, Y. Yuan, H. Song, Y. Yang, J. Wang (2017) Synthetic Saccharomyces cerevisiae‐Shewanella oneidensis consortium enables glucose‐fed high‐performance microbial fuel cell. AIChE Journal, 63(6), 1830–1838.
https://doi.org/10.1002/aic.15692
M. A. Islam, B. Ethiraj, C. K. Cheng, A. Yousuf, S. Thiruvenkadam, R. Prasad, M. M. Rahman Khan (2018) Enhanced current generation using mutualistic interaction of yeast-bacterial coculture in dual chamber microbial fuel cell. Industrial & Engineering Chemistry Research, 57(3), 813–821, https://doi.org/10.1021/acs.iecr.7b03819
C. Kim, Y. E. Song, C. R. Lee, B. H. Jeon, J. R. Kim (2016) Glycerol-fed microbial fuel cell with a co-culture of Shewanella oneidensis MR-1 and Klebsiella pneumonae J2B. Journal of Industrial Microbiology and Biotechnology, 43(10), 1397–1403, https://doi.org/10.1007/s10295-016-1820-0
V. B. Wang, K. Sivakumar, L. Yang, Q. Zhang, S. Kjelleberg, S. C. J. Loo, B. Cao (2015) Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor. Scientific Reports, 5(1), 11222,
https://doi.org/10.1038/srep11222
M. V. Gomez, G. Mai, T. Greenwood, J. Mullins (2014) The development and maximization of a novel photosynthetic microbial fuel cell using Rhodospirillum rubrum. Journal of Emerging Investigators, 3, 1–7, https://doi.org/10.1016/j.jenvman.2014.05.001
Y. Cho, T. Donohue, I. Tejedor, M. Anderson, K. McMahon, D. Noguera (2008) Development of a solar‐powered microbial fuel cell. Journal of Applied Microbiology, 104(3), 640–650,
https://doi.org/10.1111/j.1365-2672.2007.03568.x
D. Xing, Y. Zuo, S. Cheng, J. M. Regan, B. E. Logan (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science & Technology, 42(11), 4146–4151,
https://doi.org/10.1021/es800182t
Y. Zuo, D. Xing, J. M. Regan, B. E. Logan (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology, 74(10), 3130–3137, https://doi.org/10.1128/AEM.02826-07
A. P. Borole, H. O’Neill, C. Tsouris, S. Cesar (2008) A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnology Letters, 30, 1367–1372,
https://doi.org/10.1007/s10529-008-9699-2
Z.D. Liu, H. R. Li (2007) Effects of bio-and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochemical Engineering Journal, 36(3), 209–214, https://doi.org/10.1016/j.bej.2007.02.019
S. Das, R. K. Calay (2022) Experimental study of power generation and COD removal efficiency by air cathode microbial fuel cell using Shewanella baltica 20. Energies, 15(11), 4152,
https://doi.org/10.3390/en15114152
D. E. Holmes, J. S. Nicoll, D. R. Bond, D. R. Lovley (2004) Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied and Environmental Microbiology, 70(10), 6023–6030,
https://doi.org/10.1128/AEM.70.10.6023-6030.2004
K. Xiang, Y. Qiao, C. B. Ching, C. M. Li (2009) GldA overexpressing-engineered E. coli as superior electrocatalyst for microbial fuel cells. Electrochemistry Communications, 11(8), 1593–1595,