Bio-inspired synthesis of sulfhur nanoparticles and its application
DOI:
https://doi.org/10.62638/ZasMat1189Keywords:
Sulphur nanoparticles, Ficus religiosa, bioactivity, green synthesisAbstract
We employed an economical, swift, and environmentally friendly approach to synthesize sulphur nanoparticles, utilizing an extract from Ficus religiosa leaves. Comprehensive characterization of these nanoparticles was performed through UV-visible spectroscopy, FTIR, XRD, and FESEM techniques. The X-ray diffraction method unequivocally confirmed the nanometre-scale dimensions of the synthesized sulphur nanoparticles. SEM analysis elucidated their spherical morphology, while XRD data indicated a crystalline size of 23.4 nm for these prepared nanoparticles. Besides, the antibacterial assessment of sulphur nanoparticles produced from Ficus religiosa leaves exhibited superior bioactivity against harmful bacteria species such as Escherichia Coli and Staphylococcus aureus.
References
R.Niranjan, S.Zafar, B.Lochab, R.Privaadarshini (2022) Synthesis and Characterization of Sulfur and Sulfur-Selenium Nanoparticles Loaded on Reduced Graphene Oxide and their Antibacterial Activity against Gram Positive Pathogens. Nanomaterials(Basel):12(2), 191,
https://doi.org/10.3390/nano12020191.
Sh.Shankar, L.Jaiswal, R.Jong-Whan (2020) New insight into sulphur nanoparticles: Synthesis and applications. Critical Reviews in Environmental Sci. Tech., 51 (20) 2329-2356,
https://doi.org/10.1080/10643389.2020.1780880.
A. M. T.Lubis, C.Siagian, E.Wonggokusuma, A.F.Marsetyo, B.Setyohadi (2017) Comparison of Glucosamine-Chondroitin Sulfate with and without Methylsulfonylmethane in Grade I-II Knee Osteoarthritis: A Double Blind Randomized Controlled Trial. Acta medica Indonesiana, 49 (2), 105–111, PMID: 28790224.
B.Abuyeva, M.Burkitbayev, G.Mun, B.Uralbekov, N.Vorobyeva, D.Zharlykasimova, F.Urakaev (2018) Preparation of ointment materials based on sulfur nanoparticles in water-soluble polymers. Materials Today: Proceedings, 5(11), 22894–22899, https://doi.org/10.1016/j.matpr.2018.07.107.
F. Kh. Urakaev, A. I. Bulavchenko, B. M. Uralbekov, I. A. Massalimov, B. B. Tatykaev, A. K. Bolatov, D. N. Zharlykasimova, M. M. Burkitbayev (2016) Mechanochemical synthesis of colloidal sulfur particles in the Na2S2O3–H2(C4H4O4)–Na2SO3 system. Colloid Journal, 78, 210–219, https://doi.org/10.1134/S1061933X16020150.
S. Shankar, R. Pangeni, J.W. Park, J.-W. Rhim (2018) Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater. Sci. Eng. C, Mater. Biol. Appl, 92, pp. 508-517,
https://doi.org/10.1016/j.msec.2018.07.015.
R. A. Dop, D. R. Neill, T.Hasell (2023) Sulphur-polymer nanoparticles: Preparation and anti-bacterial activity. ACS Appl. Mater. Interfaces, 15(17), 20822–20832, https://doi.org/10.1021/acsami.3c03826.
P.Paralikar, M.Rai (2018) Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET Nanobiotechnol, 12(1), 25-31, https://doi.org/10.1049/iet-nbt.2017.0079
S. Roy Choudhury, S. Roy, A. Goswami, S. Basu (2021) Polyethylene glycol- stabilized sulphur nanoparticles: an effective antimicrobial agent against multidrug-resistant bacteria. J. Antimicrobial Chemotherapy, 67, 1134-1139,
https://doi.org/10.1093/jac/dkr591.
N.Chausali, J.Saxena, R.Prasad (2023) Nanotechnology as a sustainable approach for combating the environmental effects of climate change. J. Agri. Food Res., 12, 100541, https://doi.org/10.1016/j.jafr.2023.100541.
S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio (2020) The History of Nanoscience and Nanotechnology : From Chemical - Physical Applications to Nanomedicine. Molecules, 25 (1), 112, https://doi.org/10.3390/molecules25010112.
J. Singh, T. Dutta, K.H Kim, M.Rawat, P.Samddar, P.Kumar (2018) Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotech., 16, 84, https://doi.org/10.1186/s12951-018-0408-4.
S.P.K.Malhotra, M.A.Alghuthaymi (2022b) Biomolecule-assisted biogenic synthesis of metallic nanoparticle. In Elsevier eBooks, 139–163, https://doi.org/10.1016/B978-0-12-823575-1.00011-1.
P.T. Anastas, J.C. Warner (1998) Green Chemistry: Theory and Practice. Oxford University Press, New York (online edn), 30. https://doi.org/10.1093/oso/9780198506980.001.0001.
M. Shamsipur, S.M. Pourmortazavi, M. Roushani, I. Kohsari, S.S. Hajimirsadeghi (2011) Novel approach for electrochemical preparation of sulphur nanoparticles. Mikrochimica Acta, 173(3–4), 445–451, https://doi.org/10.1007/s00604-011-0581-8.
G.Cao (2004) Nanostructures and nanomaterials, https://doi.org/10.1142/p305.
J.Wang, W.Liu, G.Luo, C.Zhao, H.Zhang, M.Zhu, Q.Xu, X.Wang, C.Zhao, Y.Qu, Z.Yang, T.Yao, Y.Li, Y.Lin, Y.Wu, Y.Li (2018) Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy & Environ. Sci., 11(12), 3375–3379. https://doi.org/10.1039/c8ee02656d.
S.Mondal, N.Roy, R.A. Laskar, I.Sk, S.Basu, D.Mandal, N.A.Begum (2011) Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf. B Biointerfaces, 82 (2), 497-504. https://doi.org/10.1016/j.colsurfb.2010.10.007.
D. Acharya, S. Satapathy, P. Somu, U. K. Parida, and G. Mishra (2020) Apoptotic Effect and Anticancer Activity of Biosynthesized Silver Nanoparticles from Marine Algae Chaetomorpha Linum Extract against Human Colon Cancer Cell HCT-116. Biol.Trace Elem.Res., 199, 1812–1822. https://doi.org/10.1007/S12011-020-02304-7.
E. F. Aboelfetoh, R. A. El-Shenody, and M. M. Ghobara (2017) Eco-friendly Synthesis of Silver Nanoparticles Using Green Algae (Caulerpa Serrulata): Reaction Optimization, Catalytic and Antibacterial Activities. Environ. Monitor Assess., 189, 349. https://doi.org/10.1007/s10661-017-6033-0.
H.W.Jung, H.Y.Son, C.V.Minh, Y.H.Kim, Y. Park (2008) Methanol extract of Ficus leaf inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated microglia via the MAPK pathway. Phytother.Res., 22(8), 1064-1069. https://doi.org/10.1002/ptr.2442.
P. N. V. K. Pallela, S. Ummey, L. K. Ruddaraju, S. V. N. Pammi, S. G. Yoon (2018) Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124, 63-69. https://doi.org/10.1016/j.micpath.2018.08.026
A.Afreen, R.Ahmed, S.Mehboob, M. Tariq, H.A.Alghamdi, A.A.Zahid, I.Ali, K.Malik, A.Hasan (2020) Phytochemical-assisted biosynthesis of silver nanoparticles from Ajuga bracteosa for biomedical applications. Mater. Res. Express, 7, 075404. https://doi.org/10.1088/2053-1591/aba5d0.
R. G. Chaudhuri, S. Paria (2011) Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions. J. Colloid. Interface Sci., 354, 563 –569. https://doi.org/10.1016/j.jcis.2010.11.039
J.Coates (2006) ‘Interpretation of infrared spectra, a practical approach’. Encyclopedia of Analytical Chemistry (eds R.A. Meyers and M.L. McKelvy). 10815–10837. https://doi.org/10.1002/9780470027318.a5606.
P. Paralikar, M. Rai (2017) Bio‐inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET Nanobiotech., 23;12(1):25–31.
https://doi.org/10.1049/iet-nbt.2017.0079.
M. Suleiman, M. A. Masri, A. A. Ali (2015) ‘Synthesis of nano‐sized sulfur nanoparticles and their antibacterial activities’. J. Mater.Environ.Sci., 6 (2), 513 –518, ISSN : 2028-2508.
M. Awwad, N. M. Salem, A. O. Abdeen (2015) Novel approach for synthesis sulfur (S‐NPs) nanoparticles using Albizia julibrissin fruits extract’. Adv. Mater. Lett., 6 (5), 432–435. https://doi.org/10.5185/amlett.2015.5792
R. M. Tripathi, R. Pragadeeshwara Rao, Takuya Tsuzuki (2018) Green synthesis of sulfur nanoparticles and evaluation of their catalytic detoxification of hexavalent chromium in water. RSC Adv., 8, 36345–36352. https://doi.org/10.1039/C8RA07845A.