Study of green microalgae as a feedstock for biodiesel production

Authors

DOI:

https://doi.org/10.62638/ZasMat1186

Abstract

Biodiesel as an energy source has marked an edge to a growing energy crisis issue. There are multiple ways by which biodiesel can be produced, and aggressive research is going on in the field of biodiesel. In this work, we have focused on biodiesel production from microalgae. Green microalgae, a third-generation feedstock, are promising candidates for biodiesel production because of their high lipid content and rapid growth. In this study, for the cultivation of microalgae, an environment of varying temperatures that was between 27°C to 32°C was created. Also, three different concentrations (2:2, 2.5:1.5, and 3:1) of aquarium and freshwater were considered in this work for algae growth, and the lipid extraction method like mechanical cell destruction was investigated to determine its efficiency. Once the lipid extraction process was optimized, the extracted lipids were subjected to a transesterification process, converting them into biodiesel. The results of this study show that the greater concentration of aquarium water resulted in better algae production, i.e., dried weights of algae extracted from the above-considered concentrations were 2.69 grams, 2.79 grams, and 2.92 grams respectively.  Biodiesel produced from the dried algae was 3.15 ml, 3.96 ml, and 4.95 ml, respectively. These results suggest that green microalgae can be considered an enticing raw material for biodiesel production. Optimizing cultivation and lipid extraction methods can improve biomass and lipid productivity, boosting overall biomass yield. This study concludes that algal biodiesel can be an alternative source to petroleum-based diesel fuel.

Keywords:

Biodiesel, microalgae, lipid extraction, biomass, temperature

References

Z. Liu (2015) Chapter 1 - Global energy development: the reality and challenges. Glo. Energ. Int., 1–64,

https://doi.org/10.1016/B978-0-12-804405-6.00001-4

L. Qian, J. M. McInerney, S. S. Solomon, H. Liu, A. G. Burns (2021) Climate changes in the upper atmosphere: contributions by the changing greenhouse gas concentrations and earth's magnetic field from the 1960s to 2010s. J. of Geo. Res.: Space Phy.,126. https://doi.org/10.1029/2020JA029067.

G. Kuo (2019) When Fossil Fuels Run Out, What Then? https://mahb.stanford.edu/library-item/fossil-fuels-run/

S. Khatoon, S. K. Yadav, V. Chakravorty, J. Singh, R. B. Singh, M. S. Hasnain, S. M. M. Hasnain (2023) Perovskite solar cell’s efficiency, stability and scalability: a review. Mate. Sci. for Energ. Tech., 6, 437–59

https://doi.org/10.1016/j.mset.2023.04.007.

A. Shukla, S. K. Yadav, A. Yaqub, J. Singh, R. B. Singh (2024) Performance assessment of a 1 MW grid-connected rooftop solar photovoltaic (GCRPV) plant on an institutional building in composite climate of Northern India, Int. J. Amb. Energ. (2024). https://doi.org/https://doi.org/10.1080/01430750.2024.2392167.

S. Khatoon, V. Chakraborty, S. K. Yadav, S. Diwakar, J. Singh, R. B. Singh (2023) Simulation study of CsPbIxBr1-x and MAPbI3 heterojunction solar cell using SCAPS-1D. Solar Energy, 254, 137–57,

https://doi.org/10.1016/j.solener.2023.02.059.

S. K. Yadav, N. M. Kumar, U. Bajpai (2023) Quantitative impact assessment of temperature on the economics of a rooftop solar photovoltaic system. Environ. Sci. Pollut. Res., 30, 21900–21913,https://doi.org/10.1007/s11356-022-23592-7.

P. Moriarty, & D. Honnery, (2016) Chapter 61 Global transport energy consumption. Alt. energ. and sha. gas encyc., 651-656. https://doi.org/10.1002/9781119066354.ch61.

O. Awogbemi, D. V. V. Kallon, E. I. Onuh, & V. S. Aigbodion, (2021) An overview of the classification, production and utilization of biofuels for internal combustion engine applications. Energies, 14(18), 5687.

https://doi.org/10.3390/en14185687.

M. Mubarak, A. Shaija, T. V. Suchithra (2021) Experimental evaluation of salvinia molesta oil biodiesel/diesel blends fuel on combustion, performance and emission analysis of diesel engine. Fuel. 287, 119526,

https://doi.org/10.1016/j.fuel.2020.119526.

Z. Shao, D. Wu, J. Liang, W. Cong, K. Liang (2023) The effect of porous media on the thermal storage performance of salinity-gradient solar pond. J. of Phy.: Conf. Ser., 2584, https://doi.org/10.1088/1742-6596/2584/1/012015.

K. Venkiteshwaran, T. Xie, M. Seib, V. P. Tale, D. Zitomer (2022) (Chapter 8) Anaerobic digester biogas upgrading using microalgae. Int. Was. Manag. and Valo. using Algal Cult., 183–214,

https://doi.org/10.1016/B978-0-323-85859-5.00004-X

A. Kose, S. S. Oncel (2016) Algae as a promising resource for biofuel industry: facts and challenges. Int. J. of Energ. Res., 41 (7), 924-951. https://doi.org/10.1002/er.3699.

J. H. K. Lim, Y. Y. Gan, H. C. Ong, B. F. Lau, W. H. Chen, C. T. Chong, T. C. Ling, J. J. Klemeš (2021) Utilization of microalgae for bio-jet fuel production in the aviation sector: challenges and perspective. Ren. and Sus. Energ. Rev., 149, p.111396, https://doi.org/10.1016/j.rser.2021.111396.

M. L. N. Carneiro, F. Pradelle, S. L. Braga, M. S. P. Gomes, A. R. F. Martins, F. Turkovics, R. N. Pradelle (2017) Potential of biofuels from algae: comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Ren. and Sus. Energ. Rev., 73, 632-653. https://doi.org/10.1016/j.rser.2017.01.152.

Y. Xu, P. Hellier, S. Purton, F. Baganz, N. Ladommatos (2016) Algal biomass and diesel emulsions: an alternative approach for utilizing the energy content of microalgal biomass in diesel engines. Applied Energy, 172, 80-95,

https://doi.org/10.1016/j.apenergy.2016.03.019.

S. S. Satputaley, D. B. Zodpe, N. V. Deshpande (2017) Performance, combustion and emission study on CI engine using microalgae oil and microalgae oil methyl esters. J. of the Energ. Ins., 90 (4), 513-521,

https://doi.org/10.1016/j.joei.2016.05.011.

J. Milano, H. C. Ong, H. H. Masjuki, W. T. Chong, M. K. Lam, P. K. Loh, V. Vellayan (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Ren. and Sus. Energ. Rev., 58, 180-197,

https://doi.org/10.1016/j.rser.2015.12.150.

A. S. Bayo, D. L. Chicharro, V. Morales, J. J. Espada, D. Puyol, F. Martínez, S. Astals, G. Vicente, L. F. Bautista, R. Rodríguez (2020) Biodie¬sel and biogas production from isochrysis galbana using dry and wet lipid extraction: a biorefinery approach. Renewable Energy, 146, 188-195, https://doi.org/10.1016/j.renene.2019.06.148.

R. Halim, M. K. Danquah, P. A. Webley (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnology Advances, 30(3), 709-732, https://doi.org/10.1016/j.biotechadv.2012.01.001.

A. Demirbas (2010) Use of algae as biofuel sources. Energ. Con. and Man., 51(12), 2738–2749,

https://doi.org/10.1016/j.enconman.2010.06.010.

O. Osundeko, H. Davies, J. K. Pittman (2013) Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass and Bioenergy 56, 284–94,

https://doi.org/10.1016/j.biombioe.2013.05.027.

T. Fazal, M. S. U. Rehman, F. Javed, M. Akhtar, A. Mushtaq, A. Hafeez, A. A. Din, J. Iqbal, N. Rashid, F. Rehman (2021) Integrating bioremediation of textile wastewater with biodiesel production using microalgae (chlorella vulgaris). Chemosphere, 281, 130758, https://doi.org/10.1016/j.chemosphere.2021.130758

G. Li, J. Zhang, H. Li, R. Hu, X. Yao, Y. Liu, Y. Zhou, T. Lyu (2021) Towards high-quality biodiesel production from microalgae using original and anaerobically-digested livestock wastewater. Chemosphere, 273, 128578,

https://doi.org/10.1016/j.chemosphere.2020.128578

A.S. Bayo, D.L. Chicharro, V. Morales, J. J. Espada, D. Puyol, F. Martínez, S. Astals, G. Vicente, L. F. Bautista, R. Rodriguez (2020) Biodiesel and biogas production from isochrysis galbana using dry and wet lipid extraction: a biorefinery approach. Renewable Energy, 146, 188–95, https://doi.org/10.1016/j.renene.2019.06.148.

S. Khan, R. Siddique, W. Sajjad, G. Nabi, K. M. Hayat, P. Duan, L. Yao (2017) Biodiesel production from algae to overcome the energy crisis. Hay. J. of Bio., 24(4), 163–167, https://doi.org/10.1016/j.hjb.2017.10.003.

G. Zuccaro, A. Yousuf, A. Pollio, J. P. Steyer (2020) (Chapter 2) Microalgae Cultivation Systems. Micro. Cul. for Bio. Prod., 11–29, https://doi.org/10.1016/B978-0-12-817536-1.00002-3

G. Singh, S. K. Patidar (2018) Microalgae harves-ting techniques: A review. J. of Env. Man., 217, 499–508,

https://doi.org/10.1016/j.jenvman.2018.04.010.

Y. S. Pradana, B. R. Sadewo, S. A. Haryanto, H. Sudibyo (2021) Selection of oil extraction from chlorella species of microalgae by using multi-criteria decision analysis technique for biodiesel production. Open Chemistry, 19(1), 1029–42, https://doi.org/10.1515/chem-2021-0092.

R. R. Kumar, P. H. Rao, M. Arumugam (2015) Lipid extraction methods from microalgae: a comprehen¬sive review. Front. in Energ. Res., 2, 125610, https://doi.org/10.3389/fenrg.2014.00061.

J. Zhai, I. T. Burke, & D. I. Stewart, (2021) Beneficial management of biomass combustion ashes. Ren. and Sus. Energ. Rev., 151, 111555

Amit, U. K. Ghosh (2018) An approach for phycoremediation of different wastewaters and biodiesel production using microalgae. Env. Sci. and Pol. Res., 25(19), 18673–81, https://doi.org/10.1007/s11356-018-1967-5.

V. M. Ortiz-Martínez, P. Andreo-Martinez, N. Garcia-Martinez, A. P. de los Ríos, F. J. Hernández-Fernández, J. Quesada-Medina (2019) Approach to biodiesel production from microalgae under supercritical conditions by the PRISMA method. Fuel Pro. Tech., 191, 211-222, https://doi.org/10.1016/j.fuproc.2019.03.031.

R. Shomal, H. Hisham, A. Mlhem, R. Hassan, S. Al-Zuhair (2019) Simultaneous extraction–reaction process for biodiesel production from microalgae. Energy Reports, 5, 37–40, https://doi.org/10.1016/j.egyr.2018.11.003

Downloads

Published

18-03-2025

Issue

Section

Scientific paper