Microbial fuel cell as innovative approach for bio-electricity generation: A review

Authors

DOI:

https://doi.org/10.62638/ZasMat1184

Keywords:

Fuel cell, bio-electricity, Microorganisms, wastewater

Abstract

The current global scenario is marked by substantial energy demands coupled with limited resources, leading to a widespread energy crisis. Non-renewable energy sources are depleting rapidly, while renewable sources remain underutilized. There is an urgent need for alternative methods of energy generation. In recent times, considerable attention has been directed towards microbial fuel cells (MFCs) due to their favorable operating conditions and the availability of a variety of eco-friendly substrates as fuel. Through the active breakdown of substrates by microorganisms, bioelectricity is produced, offering a sustainable solution to the escalating energy challenges. Extensive research has yielded new insights into Microbial Fuel Cells (MFCs), revealing that a diverse range of carbon sources, including various types of waste, can be effectively utilized with a wide array of microbes. Consequently, the microbial conversion of waste through innovative bioremediation techniques like utilizing MFCs present a potentially attractive alternative to conventional treatment processes in wastewater treatment, facilitating the direct generation of electric energy. This not only aligns with prevailing technological trends but also contributes to cost reduction in the overall process. This article comprehensively examines various components of Microbial Fuel Cells (MFCs), including the anode, cathode, and membrane. To address practical challenges within this field, pragmatic solutions are proposed. The review critically assesses diverse categories of wastes suitable for Bioenergy generation, exploring the associated microorganisms, power output, key advantages, challenges, and limitations and advancements of MFC technology.

References

J.Li (2013) An Experimental Study of Microbial Fuel Cells for Electricity Generating: Performance Characterization and Capacity Improvement, J. Sust. Bioen. Sys., 3(3),171-178. http://dx.doi.org/10. 4236/jsbs.2013.33024.

B.Logan, J.Regan (2006) Microbial Fuel Cells Challenges and Applications, Environ. Sci. Technol., 40 (17), 5172-5180. https://doi.org/10. 1021/es0627592.

D.Pant, G.Van Bogaert, L.Diels, K.Vanbroekhoven (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Biores. Technol., 101(6), 1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017.

S.Elhenawy, M.Khraisheh, F.AlMomani, M.Al-Ghouti, M.K.Hassan (2022) From Waste to Watts: Updates on Key Applications of Microbial Fuel Cells in Wastewater Treatment and Energy Production, Sustainability, 14, 955. https://doi.org/10.3390/ su14020955

M.C.Potter (1911) Electrical effects accompanying the decomposition of organic compounds, Proc. R. Soc. Lond. B., 84(571), 260–276. https://doi.org/ 10.1098/rspb.1911.0073.

G.-C.Gil, I.-S.Chang, B.H.Kim, M.Kim, J.-K.Jang, H.S.Park, H.J.Kim (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell, Biosens. & Bioelectron., 18(4), 327-334. https://doi.org/10.1016/S0956-5663(02) 00110-0.

B.Logan (2009) Scaling up microbial fuel cells and other bioelectrochemical systems, Appl. Microbiol. Biotechnol., 85 (6), 1665-1671. https://doi.org/ 10.1007/s00253-009-2378-9.

L.W.Negassa, M.Mohiuddin, G.A.Tiruye (2021) Treatment of brewery industrial wastewater and generation of sustainable bioelectricity by microbial fuel cell inoculated with locally isolated microorganisms, J. Water Process Eng. 41, 102018. https://doi.org/10.1016/j.jwpe.2021.102018.

S.G.A.Flimban, I.M.I.Ismail, T.Kim, S.-E.Oh (2019) Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability, Energies, 12, 3390. https://doi.org/10.3390/ en12173390.

Y.Fan, H.Hu, H.Liu (2007) Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration, J. Power Sources 171, 348–354. https://doi.org/10.1016/j.jpowsour.2007.06.220.

S.E.Oh, B.E.Logan (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biotechnol., 70, 162– 169. https://doi.org/10.1007/s00253-005-0066-y.

D.R.Bond, D.R.Lovley (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans, Appl. Environ. Microbiol., 71, 2186-2189. https://doi.org/10.1128/ AEM.71.4.2186-2189.2005.

B.Min, S.Cheng, B.E.Logan (2005) Electricity generation using membrane and salt bridge microbial fuel cells, Water Res., 39, 1675–1686. https://doi.org/10.1016/j.watres.2005.02.002

A.Anjum, S.A.Mazari, Z.Hashmi, A.S.Jatoi, R.Abro (2021) A review of role of cathodes in the performance of microbial fuel cells, J. Electroanal. Chem. 899, 115673, https://doi.org/10.1016/ j.jelechem.2021.115673.

J.Niessen, U.Schröder, F.Scholz (2004) Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch, Electrochem Commun., 6, 955-958. https://doi.org/ 10.1016/j.elecom.2004.07.010.

R.T.Maminska, K.Szymona, P.Król, K.Gliniewicz, K.P.Przybylska, M.Kloch, B.E. Logan (2018) Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell Energies, 11(1), 124. https://doi.org/10.3390/en11010124.

S.H.A.Hassan, Y.S.Kim, S.E.Oh (2012) Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell, Enzyme Microb. Tech., 51, 269-273. https://doi.org/10.1016/j.enzmictec.2012.07.008.

N.Mokhtarian, D.Ramli, M.Rahimnejad, G.Najafpour (2012) Bioelectricity generation in biological fuel cell with and without mediators, World Appl. Sci. J., 18(4), 559-567. http://dx.doi.org/10.5829/idosiwasj. 2012.18.04.1563

C.J.Sund, S.McMasters, S.R.Crittenden, L.E. Harrell, J.J.Sumner (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell, Appl. Microbiol. Biotechnol.,76, 561–568.https://doi.org/10.1007/s00253-007-1038-1.

G.Antonopoulou, K.Stamatelatou, S.Bebelis, G.Lyberatos (2010) Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell, Biochem. Eng. J., 50, 10–15. http://dx.doi.org/10.1016/j.bej.2010.02.008.

L.Zhuang, S.Zhou, Y.Wang, C.Liu, S.Geng (2009) Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells, Biosens. Bioelectron., 24, 3652-3656. https://doi.org/10.1016/j.bios. 2009.05.032.

J.Sun, Y.Hu, Z.Bi, Y.Cao (2009) Improved performance of air cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation, J. Power Sources, 187, 471–479. https://doi.org/10.1016/j.jpowsour.2008.11.022

D.Park, J.Zeikus (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens, Appl. Microbiol. Biotechnol. 59, 58–61. https://doi.org/10.1007/s00253-002-0972-1.

L.Wei, Z.Yuan, M.Cui, H.Han, J.Shen (2012) Study on electricity-generation characteristic of two-chambered microbial fuel cell in continuous flow mode, Int. J. Hyd. Energy, 37, 1067-1073. https://doi.org/10.1016/j.ijhydene.2011.02.120.

P.A.Vilajeliu, S.Puig, D.I.Salcedo, M.Balaguer, J.Colprim (2017) Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials, Environ. Sci. Water Res.Tech., 3, 947-959. https://doi.org/10.1039/C7EW00079K.

M.Ghasemi, W.R.Wan, W.R.Ismail, M.Rahimnejad, A.F.Ismail, J.X.Leong, M. Miskan, K.B.Liew (2012) Effect of pretreatment and biofouling of proton exchange membrane on microbial fuel cell performance, Int. J. Hyd Energy, 38, 5480–5484. http://dx.doi.org/10.1016/j.ijhydene.2012.09.148.

Q.Deng, X.Li, J.Zuo, A.Ling, B.E.Logan (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell, J. Power Sources, 195(4), 1130–1135. https://doi.org/10.1016/j.jpowsour.2009.08.092.

S.Peighambardoust, S. Rowshanzamir, M.Amjadi (2010) Review of the proton exchange membranes for fuel cell application, Int. J. Hyd. Energy, 35, 9349–9384. http://dx.doi.org/10.1016/j.ijhydene.2010.05.017.

A.Srivastava, P.Singh, S.Srivastava, S.Singh (2023) Reclamation and characterization of value-added products from pulp and paper mill effluent using microbial fuel cell, Materials Today: Proceedings, ISSN 2214-7853, https://doi.org/10.1016/j.matpr. 2023.02.415

G.M.Krishna, S.V.Mohan, P.N.Sarma (2010) Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation, J. Hazard. Mater., 177(1-3), 487-94. https://doi.org/ 10.1016/j.jhazmat.2009.12.059

Y.Zuo, S.Cheng, D.Call, B.E.Logan (2007) Tubular membrane cathodes for scalable power generation in microbial fuel cells, Environ. Sci. Technol. 41(9), 3347–3353. https://doi.org/10.1021/es0627601.

X.Zhang, S.Cheng, X.Wang, X.Huang, B.E.Logan (2009) Separator characteristics for increasing performance of microbial fuel cells, Environ. Sci. Technol., 43(21), 8456–8461. https://doi.org/ 10.1021/es901631p.

M.Rahimnejad, A.A.Ghoreyshi, G.Najafpour (2011) Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Appl. Energy 88(11), 3999–4004. http://dx.doi. org/10.1016/j.apenergy.2011.04.017.

P.Jalili, A.Ala, P.Nazari, B.Jalili, D.D.Ganji (2024) A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms, Heliyon,10(3), e25439. https://doi.org/10.1016%2Fj.heliyon.2024.e25439.

H.Pham, N.Boon, M.Marzorati, W.Verstraete (2009) Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia, Water Research, 43(11), 2936-2946. https://doi.org/10.1016/j. watres.2009.04.004.

B.Ebadinezhad, S.Ebrahimi, H.Shokrkar (2019) Evaluation of microbial fuel cell performance utilizing sequential batch feeding of different substrates, J. Electroanal. Chem., 836,149-157. http://dx.doi.org/10.1016/j.jelechem.2019.02.004.

M.K.Mehmood, E.Adetutu, D.B.Nedwell, A.S.Ball (2009) In situ microbial treatment of landfill leachate using aerated lagoons, Biores. Technol., 100(10), 2741-2744. https://doi.org/10.1016/j.biortech.2008. 11.031

J.M.Sonawane, R.Mahadevan, A.Pandey, J.Greener (2022) Recent progress in microbial fuel cells using substrates from diverse sources, Heliyon, 8 (12), e12353, https://doi.org/10.1016/ j.heliyon.2022.,e12353.

M.Narayan, P.Solanki, R.K.Srivastava, (2018) Treatment of sewage (domestic wastewater or municipal wastewater) and electricity production by integrating constructed wetland with microbial fuel cell, In Sewage. London, UK, IntechOpen. http://dx.doi.org/10.5772/intechopen.75658

B.Min, B.E.Logan (2004) Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell, Environ. Sci. Technol., 38(21), 5809-5814. https://doi.org/10.1021/es0491026

J.Heilmann, B.E.Logan (2006) Production of electricity from proteins using a microbial fuel cell, Water Environ. Res, 78(5), 531-537. https://doi.org/10.2175/106143005x73046.

Y.Tian, M.Xiaoxue, L.Qing, W.Di, R.Nanqi, X.Defeng (2017) Biological degradation of potato pulp waste and microbial community structure in microbial fuel cells, RSC Adv., 7, 8376-8370. https://doi.org/10.1039/C6RA27385H.

Y.C.-Bautista, E.R.-Morales, B.P.-Hernández (2020) Electricity Production and Bioremediation from Synthetic Sugar Industry Wastewater by Using Microbial Isolate in Microbial Fuel Cell, Sugar Tech., 22, 820-829.http://dx.doi.org/10.1007/ s12355-020-00830-1.

Y.Sun, J.Zuo, L.Cui, Q.Deng, Y.Dang (2010) Diversity of microbes and potential exoelectrogenic bacteria on anode surface in microbial fuel cells, J. Gen. Appl. Microbiol., 56, 19-29. https://doi.org/10.2323/jgam.56.19.

B.C.-Quezada, M.Delia, A.Bergel (2010) Testing various food-industry wastes for electricity production in microbial fuel cell, Bioresour. Technol., 101(8), 2748-2754. https://doi.org/10. 1016/j.biortech.2009.11.076.

S.V.Mohan, G.Mohanakrishna, P.N.Sarma (2010) Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell, Bioresour. Technol., 101(3), 970-976. https://doi.org/ 10.1016/j.biortech.2009.09.005.

M.Christwardana, A.K.Prabowo, A.P.Tiarasukma, D.Ariyanti (2016) Microbial Fuel Cells for Simultaneous Electricity Generation and Organic Degradation from Slaughterhouse Wastewater, Int. J. Renew. Energy Dev., 5(2), 107-112. https://doi.org/10.14710/ijred.5.2.107-112.

H.Li , Y.Tian, W.Zuo , J.Zhang , X.Pan , L.Li , X.Su (2016) Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell, Bioresour. Technol., 205,104-110. https://doi.org/10.1016/j.biortech.2016.01.042.

S.H.A.Hassan, S.M.F.Gad-Elrab, M.Rahimnejad, M.Ghasemi, J.H.Joo, Y.S.Ok, I.S.Kim, S.E.Oh (2014) Electricity generation from rice straw using a microbial fuel cell, Int. J. Hyd. Energy 39(17), 9490-9496. https://doi.org/10.1016/j.ijhydene.2014.03.259

X.C.Abrevaya, N.Sacco, P.J.Mauas, E.Cortón (2011) Archaea-based microbial fuel cell operating at high ionic strength conditions, Extremophiles, 15(6), 633-642. https://doi.org/10.1007/s00792-011-0394-z.

S.V.Ramanaiah, C.M.Cordas, S.C.Matias, M.V. Reddy, J.H.Leitão, L.P.Fonseca (2021) Bioelectricity generation using long-term operated biocathode: RFLP based microbial diversity analysis, Biotechnol. Rep., 32, e00693. https://doi.org/10.1016/j.btre.2021.e00693.

B.Baniasadi, F.Vahabzadeh (2021) The performance of a cyanobacterial biomass-based microbial fuel cell (MFC) inoculated with Shewanella oneidensis MR-1, J. Environ Chem. Engg., 9(6),106338.https://doi.org/10.1016/j.jece.2021.106338.

K.Wrighton, P.Agbo, F.Warnecke, et al. ((2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells, ISME J., 2, 1146–1156. http://dx.doi.org/10.1038/ismej.2008.48.

D.Z.Khater, K.M.El-Khatib, H.M.Hassan (2017) Microbial diversity structure in acetate single chamber microbial fuel cell for electricity generation, J. Gen. Engg. Biotechnol.,15(1), 127-137. https://doi.org/10.1016/j.jgeb.2017.01.008.

O.Lefebvre, T.T.Nguyen, A.Al-Mamun, I.S.Chang, H.Y.Ng (2010) T-RFLP reveals high β-Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater, J. Appl. Microbiol, 109(3), 839-850. https://doi.org/10. 1111/j.1365-2672.2010.04735.x

M.Rothballer, M.Picot, T.Sieper, J.B.A.Arends, M.Schmid, A.Hartmann, N.Boon, C.J.N.Buisman, F.Barrière, David.Strik (2015), Monophyletic group of unclassified γ-Proteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode, Bioelectrochem.,106(A), 167-176. https://doi.org/10.1016/j.bioelechem.2015.04.004.

J.Greenman, I.Gajda, J.You, B.A.Mendis, O.Obata, G.Pasternak, I.Ieropoulos (2021) Microbial fuel cells and their electrified biofilms, Biofilm, 3, 100057. https://doi.org/10.1016/j.bioflm.2021.100057.

E.T.Sayed, M.A.Abdelkareem (2017) Yeast as Biocatalyst in Microbial fuel cell, Old Yeast-New Questions, http://dx.doi.org/10.5772/intechopen.70402

C.Xu, ,P.Karen, M.M.F.Choi, R.Wang (2015) Using live algae at the anode of a microbial fuel cell to generate electricity, Environ. Sci. Poll. Res. Int. 22(20), 15621-35. https://doi.org/10.1007/s11356-015-4744-8.

M.Zhou, M.Chi, H.Wang, T.Jin (2012) Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells, Biochem. Eng. J., 60, 151–155. https://doi.org/10.1016/j.bej.2011.10.014.

J.M.Sonawane, A.Yadav, P.C.Ghosh, S.Bodunrin, O.Adeloju (2016) Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells, Biosens. Bioelectron., 90, 558-576. https://doi.org/10.1016/j.bios.2016.10.014

A.A.Yaqoob, M.N.M.Ibrahim, S.Rodríguez (2020) Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochem. Eng. J., 164, 107779. https://doi.org/10.1016/j.bej.2020.107779.

Y.Leng, P.Ming, D.Yang, C.Zhang (2020) Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes, J. Power Sources, 451, 227783. https://doi.org/10.1016/j.jpowsour.2020.227783.

P.Singh, A.Srivastava (2017) Electricity generation by microbial fuel cell using pulp and paper mill wastewater, vermicompost and Escherichia coli, Ind. J. Biotechnol., 16, 211-215. http://nopr.niscair.res.in/handle/123456789/42921.

P.Singh, A.Srivastava, N.Srivastava (2017) Generation of electricity by using non-mediated fuel cell by utilizing different types of wastewater, J Sci. Ind. Res., 76(8), 512-514. http://nopr.niscpr. res.in/handle/123456789/42540.

A.Srivastava, P.Singh, K.Srivastava, P.Singh, D.Ghildyal, N.Srivastava, A.Upadhyay (2020) Application of Microbial fuel cell for electricity generation utilizing different wastewater, Poll. Res., 39(1), 118-123.

F.S.Fadzli, S.A.Bhawani, R.E.A.Mohammad (2021) Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction, J. Chem, 4570388. https://doi.org/ 10.1155/2021/4570388

N.K.Abd-Elrahman, N.Al-Harbi, N.M.Basfer, Y.Al-Hadeethi, A.Umar, S.Akbar (2022) Applications of Nanomaterials in Microbial Fuel Cells: A Review. Molecules, 27(21), 7483. https://doi.org/ 10.3390/molecules27217483.

W.Xiayuan, X.Xiaomin, O.Gary, B.Gianluca, Z.Jun, Y.Xiaoyu, X.Xinxin, L.Zhang, W.Ping, J.Honghua (2018) Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift, Biores. Tech., 270, 11-19. https://doi.org/10.1016/j.biortech.2018.08.092.

Q.Yan, M.L.Chang, B.Shu-Juan, B.Qiao-Liang (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells, J. Power Sources, 170(1) ,79-84. https://doi.org/10. 1016/j.jpowsour.2007.03.048

D.Sanchez, D.Jacobs, K.Gregory, J.Huang, Y.Hu, R.Vidic, M.Yun (2015) Changes in carbon electrode morphology affect microbial fuel cell performance with Shewanella oneidensis MR-1, Energies, 8, 1817-1829. https://doi.org/10.3390/en8031817.

S.Qiu, Z.Guo, F.Naz, Z.Yang, C.Yu (2021) An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells, Bioelectrochem.,141, 107834. https://doi.org/10.1016/j.bioelechem.2021.107834.

A.A.Yaqoob, M.N.M.Ibrahim, M.Rafatullah, Y.S. Chua, A.Ahmad, K.Umar (2020) Recent Advances in Anodes for Microbial Fuel Cells: An Overview, Materials,13(9), 2078. https://doi.org/10. 3390/ma13092078.

A.Anjum, M.S.Ali, Z.Hashmi, J.A.Sattar, R.Abro (2021) A Review of Role of Cathodes in the Performance of Microbial Fuel Cells, J. Electroanal. Chem., 899, 115673. https://doi.org/10.1016/ j.jelechem.2021.115673.

V.Venkatramanan, S.Shah, R.Prasad (2021) A Critical Review on Microbial Fuel Cells Technology: Perspectives on Wastewater Treatment, Open Biotechnol. J.,15, 131–141. http://dx.doi.org/10.2174/1874070702115010131.

H.L.Song, Y.Zhu, J.Li (2019) Electron Transfer Mechanisms, Characteristics and Applications of Biological Cathode Microbial Fuel Cells - A Mini Review, Arab. J. Chem.,12, 2236-2243. https://doi.org/10.1016/j.arabjc.2015.01.008

A.Banerjee, R.K.Calay, F.E.Eregno (2022) Role and Important Properties of a Membrane with Its Recent Advancement in a Microbial Fuel Cell, Energies, 15, 444. https://doi.org/10.3390/en15020444

J.X.Leong, W.R.W.Daud, M.Ghasemi, K.B.Liew, M.Ismail (2013) Ion Exchange Membranes as Separators in Microbial Fuel Cells for Bioenergy Conversion: A Comprehensive Review, Renew. Sustain. Energy Rev., 28, 575–587. https://doi.org/10.1016/j.rser.2013.08.052.

J.R-Nava, M.M-Castrejón, R.L.G-Mesino, J.A.L-Díaz, O.T-Mendoza, A.S-Villagrana, F.Rojano, G.H-Flores (2021) The Implications of Membranes Used as Separators in Microbial Fuel Cells, Membranes, 11(10), 738. https://doi.org/10.3390/membranes 11100738.

W.W.Li, G.P.Sheng, X.W.Liu, H.Q.Yu (2011) Recent Advances in the Separators for Microbial Fuel Cells, Bioresour. Technol., 102, 244–252. https://doi.org/10.1016/j.biortech.2010.03.090.

M.Kamali, Y.Guo, T.M.Aminabhavi, R.Abbassi, R.Dewil, L.Appels (2023) Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies, Renew. Sustain. Energy Rev., 173, 113095. https://doi.org/10.1016/j.rser.2022.113095.

P.Singh, A.Srivastava, N.Srivastava (2020) Electricity Optimization in Microbial Fuel Cell of Distillery Wastewater, Vermicompost and Escherichia coli, J Sci. Ind. Res., 79, 736-739. http://nopr.niscpr.res.in/handle/123456789/55210.

Q.Deng, X.Li, J.Zuo, A.Ling, B.E.Logan (2009) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell, J. Power Sources, 195, 1130-1135. https://doi.org/10.1016/j.jpowsour.2009.08.092.

Downloads

Published

21-09-2024

Issue

Section

Review Paper