Elastic and mechanical properties of Osmium Diboride under high pressure
DOI:
https://doi.org/10.62638/ZasMat1182Keywords:
DFT; OsB2; PressureAbstract
The approach towards designing superhard materials incorporates the lighter elements like Boron, Carbon and Nitrogen. With the application of developed DFT theoretical formalism, the calculation of the single crystal elastic constants for Osmium Diboride OsB2 under High Pressure from first principle calculations are described in this paper. The calculated mechanical properties using Voigt and Reuss approximation for Bulk (B), Young (E) and Shear Modulus (G) (in kbar) and Poisson ratio (n) for different pressure ranges (0to 200 GPa) have been reported.
References
Cumberland, R. W., M. B. Weinberger, J. J. Gilman, S. M. Clark, S. H. Tolbert, and R. B. Kaner. "Osmium Diboride, An Ultra-Incompressible, Hard Material." Journal of the American Chemical Society 127 (2005): 7264-7265. https://doi.org/10.1021/ja043806y.
Hebbache, M., L. Stuparević, and D. Živković. "A New Superhard Material: Osmium Diboride OsB2." Solid State Communications 139 (2006): 227-231. https://doi.org/10.1016/j.ssc.2006.05.041.
Kempter, C. P., and R. J. Fries. "Crystallography of the Ru–B and Os–B Systems." The Journal of Chemical Physics 34 (1961): 1994–1995. https://doi.org/10.1063/1.1731807.
Roof, R. B., and C. P. Kempter. "New Orthorhombic Phase in the Ru–B and Os–B Systems." The Journal of Chemical Physics 37 (1962): 1473–1476. https://doi.org/10.1063/1.1733309.
Xie, Z., R. G. Blair, N. Orlovskaya, D. A. Cullen, and P. E. Andrew. "Thermal Stability of Hexagonal OsB2." Journal of Solid State Chemistry 99 (2014): 4057–4065. https://doi.org/10.1111/jace.14434.
Zhao, S., Y. Yang, J. Lu, W. Wu, S. Sun, Xi Li, X. Zhao, S. Cao, J. Zhang, and W. Ren. "Carbon-Rich Superhard Ruthenium Carbides from First-Principles." Materials and Design 117 (2017): 353-362. https://doi.org/10.1016/j.matdes.2016.12.094.
Fine, M. E., L. D. Brown, and H. L. Marcus. "Elastic Constants versus Melting Temperature in Metals." Scripta Metallurgica 18 (1984): 951-956. https://doi.org/10.1016/0036-9748(84)90267-9.
Wani, T. A., A. Maaruf, and M. Shiraz. "First Principles Calculations of Thermodynamic Properties of OsB2." Materials Today: Proceedings 28 (2020): 23-27. https://doi.org/10.1016/j.matpr.2019.12.173.
Pugh, S. F. "Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals." Taylor & Francis 45 (1954): 823-843. https://doi.org/10.1080/14786440808520496.
Wani, T. A., and B. K. Das. "First Principles Calculations of Thermodynamic Properties of ZrB2." Archives of Thermodynamics 39 (2018): 113-124. https://doi.org/10.1515/aoter-2018-0032.
Monkhorst, H. J., and J. D. Pack. "Special Points for Brillouin-Zone Integrations." Physical Review B 13 (1976): 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188.
Tyuterev, V. G., and N. Vast. "Murnaghan’s Equation of State for the Electronic Ground State Energy." Computational Materials Science 38 (2006): 350-353. https://doi.org/10.1016/j.commatsci.2005.08.012.
Obi-Egbedi, N. O., and I. B. Obot. "Adsorption Behavior and Corrosion Inhibitive Potential of Xanthese on Mild Steel/Sulfuric Acid Interface." Arabian Journal of Chemistry 5 (1) (2012): 121-133. https://doi.org/10.1016/j.arabjc.2010.08.004.