Effect of Ni content over Ni-Mg-Al hydrotalcite structure

Authors

  • Ravi Shanker Ahuja Ravi School of Sciences, Noida International University, Greater Noida, India Author
  • Annabathini Geetha Bhavani School of Sciences, Noida International University, Greater Noida, India Author https://orcid.org/0000-0003-0258-5930
  • Tanveer Ahmad Wani Tanveer School of Sciences, Noida International University, Greater Noida, India Author https://orcid.org/0000-0001-5582-6190
  • Tara Prasad School of Sciences, Noida International University, Greater Noida, India Author

DOI:

https://doi.org/10.62638/ZasMat1178

Keywords:

Hydrotalcite materials; Synthesis; Nickel; Characterization

Abstract

Hydrotalcite powder materials have well demanded applications in various fields. The Ni-Mg-Al hydrotalcite materials are prepared through co-precipitation method by varying the Ni amounts. The Ni ratios of 0.1, 0.2, 0.3 and 0.4 results the materials of Ni0.1Mg0.60Al0.34, Ni0.2Mg0.60Al0.34, Ni0.3Mg0.40Al0.34, Ni0.4Mg0.30Al0.34 are obtained at pH of 9.3.  The calcined hydrotalcite materials are analysed through BET, XRD and SEM. The observations are well in correlation between the materials. Increase in Ni amount of 0.2 leads the optimum level of loading in hydrotalcite structure which may lead the inter-layer platelets spacing and reduces the surface area.

 

 

References

Trujillano, R., Francisc, Labajos, and V. Rives. "Hydrotalcites, a rapid survey on the very recent synthesis and applications procedures." Applied Clay Science 238 (2023): 106917-106927. https://doi.org/10.1016/j.clay.2023.106927.

Wiyantoko, B., P. Kurniawati, T. E. Purbaningtias, and I. Fatimah. "Synthesis and Characterization of Hydrotalcite at Different Mg/Al Molar Ratios." Procedia Chemistry 17 (2015): 21-26. https://doi.org/10.1016/j.proche.2015.12.115.

Forano, C., T. Hibino, F. Leroux, and Ho, G. In: Bergaya, F., Theng, B.K.G., and Lagaly. "Developments in clay science." Elsevier, Amsterdam, 1 (2006): 1021-1095. http://dx.doi.org/10.1016/S1572-4352(05)01001-9.

Cavani, F., F. Trifirò, and A. Vaccari. "Hydrotalcite-type anionic clays: preparation, properties and applications." Catalysis Today 11 (1991): 173-301. https://doi.org/10.1016/0920-5861(91)80068-K.

"Recommendations on Nomenclature for Contamination Phenomena in Precipitation from Aqueous Solutions." International Union of Pure and Applied Chemistry 37 (1974): 463-468. https://doi.org/10.1351/pac197437040463.

Schüth, F., M. Hesse, K. K. Unger, G. Ertl, H. Knoezinger, and J. Weitkamp. Handbook of Heterogeneous Catalysis, 2nd Edition (2008): 100-119.

Tsyganok, A. I., T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, and T. Hayakawa. "Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides." Journal of Catalysis 213 (2003): 191-203. https://doi.org/10.1016/S0021-9517(02)00047-7.

Zhang, Yan, and Julian R. G. Evans. "Alignment of layered double hydroxide platelets." Colloids and Surfaces A: Physicochemical and Engineering Aspects 408 (2012): 71-78. https://doi.org/10.1016/j.colsurfa.2012.05.033.

Takehira, K., T. Kawabata, T. Shishido, K. Murakami, T. Ohi, D. Shoro, M. Honda, and K. Takaki. "Mechanism of reconstitution of hydrotalcite leading to eggshell-type Ni loading on MgAl mixed oxide." Journal of Catalysis 231 (2005): 92-104. https://doi.org/10.1016/j.jcat.2005.01.025.

Baltes, C., S. Vukojević, and F. Schüth. "Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis." Journal of Catalysis 258 (2008): 334-344. https://doi.org/10.1016/j.jcat.2008.07.004.

Bhavani, A. G., W. Y. Kim, J. Y. Kim, and J. S. Lee. "Improved activity and coke resistance by promoters of nanosized trimetallic catalysts for autothermal carbon dioxide reforming of methane." Applied Catalysis A: General 450 (2013): 63-72. https://doi.org/10.1016/j.apcata.2012.10.008.

Bhavani, A. G., W. Y. Kim, J. W. Lee, and J. S. Lee. "Influence of metal particle size on oxidative CO2 reforming of methane over supported nickel catalysts: Effects of second-metal addition." ChemCatChem 7 (2015): 1445-1452. https://doi.org/10.1002/cctc.201500003.

Bhavani, A. G., W. Y. Kim, and J. S. Lee. "Autothermal CO2 reforming with methane over crystalline LaMn1-XNiXO3 perovskite catalysts." ACS Catalysis 3 (2018): 1537-1544. https://doi.org/10.35840/2631-5076/9210.

Bhavani, A. G., T. A. Wani, A. Ma'aruf, and T. Prasad. "Effect of ageing process on crystal morphology of Co-Mg-Al hydrotalcite." Materials Today: Proceedings 44 (2021): 2277-2282. https://doi.org/10.1016/j.matpr.2020.12.390.

Martínez, R., E. Romero, C. Guimon, and R. Bilbao. "CO2 reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum." Applied Catalysis A: General 274 (2004): 139-149. https://doi.org/10.1016/j.apcata.2004.06.017.

Juan-Juan, J., M. C. Román-Martínez, and M. J. Illán-Gómez. "Nickel catalyst activation in the carbon dioxide reforming of methane: Effect of pretreatments." Applied Catalysis A 55 (2009): 27-32. https://doi.org/10.1016/j.apcata.2008.10.058.

Perez-Lopez, O. W., A. Senger, N. R. Marcilio, and M. A. Lansarin. "Effect of composition and thermal pretreatment on properties of Ni–Mg–Al catalysts for CO2 reforming of methane." Applied Catalysis A: General 303 (2006): 234-244. https://doi.org/10.1016/j.apcata.2006.02.024.

Shishido, T., M. Sukenobu, H. Morioka, R. Furukawa, H. Shirahase, and K. Takehira. "CO2 reforming of CH4 over Ni/Mg–Al oxide catalysts prepared by solid phase crystallization method from Mg–Al hydrotalcite-like precursors." Catalysis Letters 73 (2001): 21-26.

Tay, H. H., Z. Guo, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo, and A. Borgna. "Morphology and composition controllable synthesis of Mg–Al–CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity." Applied Clay Science 55 (2012): 18-26. https://doi.org/10.1016/j.clay.2011.07.024.

Labajos, F. M., V. Rives, and M. A. Ulibarri. "Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite-like materials." Journal of Materials Science 27 (1992): 1546-1552. https://doi.org/10.1007/BF00542916.

Behrens, M., I. Kasatkin, S. Kühl, and G. Weinberg. "Phase-pure Cu,Zn,Al hydrotalcite-like materials as precursors for copper-rich Cu/ZnO/Al2O3 catalysts." Chemistry of Materials 22 (2010): 386-397. https://doi.org/10.1021/cm9029165.

Kühl, S., A. Tarasov, S. Zander, I. Kasatkin, and M. Behrens. "Cu-based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: a microstructural, thermoanalytical, and in situ XAS study." Chemistry - A European Journal 20 (2014): 3782-3792. https://doi.org/10.1002/chem.201302599.

Downloads

Published

21-09-2024

Issue

Section

Scientific paper