Clay and clay minerals: A brief review from fundamentals to applications
DOI:
https://doi.org/10.62638/ZasMat1138Abstract
Clay and clay minerals are naturally occurring materials and available abundantly on the earth. They are inexpensive, and have a range of structures and properties with mechanical and heat stability. They are layered magnesium or aluminium silicates composed of tetrahedrally coordinated silicate sheets and octahedrally coordinated magnesium or aluminium hydroxide sheets. Because of natural abundance and environment friendly nature, clay and clay minerals have been used in different industrial sectors. In this review article, classification of clay minerals, structures, properties and their applications in different sectors have been discussed. Some of the important sectors, where clay and clay minerals are being used extensively are Agriculture and farming, Fertilizers and soil conditioners, Pesticides and Herbicides, Animal feeds, Food industry, Detergent industry, Cosmetic and pharmaceutical industry, Biomedical industry, Textile and paint industry, Oil and gas Exploration, Construction Industry, Environmental Protection, Carbon dioxide capture, Photocatalysis, etc. We tried to update the current knowledge with recent developments and progress in clay and clay minerals in this review.
Keywords:
clay, clay minerals, structure, property, applications, agriculture industry, pharmaceutical industryReferences
F. Bergaya, G. Lagaly (2013) General introduction: clays, clay minerals, and clay science, Dev. Clay Sci., 5, 1-19. https://doi.org/10.1016/B978-0-08-098258-8.00001-8
M. Kotal, A.K. Bhowmick (2015) Polymer nanocomposites from modified clays: Recent advances and challenges, Prog. Polym. Sci., 51, 127-187. https://doi.org/10.1016/j.progpolymsci.2015.10.001
M.M. Orta, J. Martin, J. Santos, I. Aparicio, S. Medina-Carrasco, E. Alonso (2020) Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation, Appl. Clay Sci., 198, 105838. https://doi.org/10.1016/j.clay.2020.105838
P.G. Balkanloo, A.P. Marjani, F. Zanbili, M. Mahmoudian (2022) Clay mineral/polymer composite: characteristics, synthesis, and application in Li-ion batteries: A review, Appl. Clay Sci., 228, 106632. https://doi.org/10.1016/j.clay.2022.106632
K. Wal, P. Rutkowski, W. Stawinski (2021) Application of clay minerals and their derivatives in adsorption from gaseous phase, Appl. Clay Sci., 215, 106323. https://doi.org/10.1016/j.clay.2021.106323
J.H. Yang, J.H. Lee, H.J. Ryu, A.A. Elzatahry, Z.A. Alothman, J.H. Choy (2016) Drug-clay nanohybrids as sustained delivery systems, Appl. Clay Sci., 130, 20-32. https://doi.org/10.1016/j.clay.2016.01.021
G.E. Christidis (2011) Industrial clays, EMU Notes Mineral., 9, 341-414. https://doi.org/10.1180/emu-notes.2010.emu9-9
N. Kumari, C. Mohan (2021) Basics of clay minerals and their characteristic properties, https://doi.org/10.5772/intechopen.97672
F. Wypych, R.A. de Freitas (2022) Clay minerals: Classification, structure, and properties, Dev. Clay Sci., 10, 1-35. https://doi.org/10.1016/B978-0-323-91858-9.00004-5
A. Hamza, I.A. Hussein, M. Mahmoud (2023) Introduction to reservoir fluids and rock properties, Dev. Pet. Sci., 78, 1-19. https://doi.org/10.1016/B978-0-323-99285-5.00003-X
C.G. Kim (2013) Adsorption/ion exchange of metal ions on clay mineral surfaces, Asian J. Chem., 25(10), 5884. https://doi.org/10.14233/ajchem.2013.OH118
F. Anouar, A. Elmchaouri, N. Taoufik, Y. Rakhila (2019) Investigation of the ion exchange effect on surface properties and porous structure of clay: Application of ascorbic acid adsorption, J. Environ. Chem. Eng., 7(5), 103404. https://doi.org/10.1016/j.jece.2019.103404
S.C. Aboudi Mana, M.M. Hanafiah, A.J.K. Chowdhury (2017) Environmental characteristics of clay and clay-based minerals, Geol. Ecol. Landsc., 1(3), 155-161. https://doi.org/10.1080/24749508.2017.1361128
L. Vaculikova, V. Valovicova, E. Plevova, B.D. Napruszewska, D. Duraczynska, R. Karcz, E.M. Serwicka (2021) Synthesis, characterization and catalytic activity of cryptomelane/montmorillonite composites, Appl. Clay Sci., 202, 105977. https://doi.org/10.1016/j.clay.2021.105977
D.K. Dutta (2018) Clay mineral catalysts, Dev. Clay Sci., 9, 289-329. https://doi.org/10.1016/B978-0-08-102432-4.00009-3
J.A. Cecilia, C.P. Jimenez-Gomez (2021) Catalytic applications of clay minerals and hydrotalcites, Catalysts, 11(1), 68. https://doi.org/10.3390/catal11010068
R.W. McCabe, J.M. Adams (2013) Clay minerals as catalysts, Dev. Clay Sci., 5, 491-538. https://doi.org/10.1016/B978-0-08-098259-5.00019-6
K.M. Manjaiah, R. Mukhopadhyay, R. Paul, S.C. Datta, P. Kumararaja, B. Sarkar (2019) Modified clay and zeolite nanocomposite materials, Elsevier. https://doi.org/10.1016/B978-0-12-814617-0.00008-6
G.J. Churchman (2018) Game changer in soil science: Functional role of clay minerals in soil, J. Plant Nutr. Soil Sci., 181(1), 99-103. https://doi.org/10.1002/jpln.201700605
D. Merino, B. Tomadini, M.F. Salcedo, A.Y. Mansilla, C.A. Casalongue, V.A. Alvarez (2020) Nanoclay as carriers of bioactive molecules applied to agriculture, In: Handbook of Nanomaterials and Nanocomposites for Energy and Environment Applications, Springer. https://doi.org/10.1007/978-3-030-11155-7_62-1
G.K. Kome, R.K. Enang, F.O. Tabi, B.P.K. Yerima (2019) Influence of clay minerals on some soil fertility attributes: A review, Open J. Soil Sci., 9(9), 155-188. https://doi.org/10.4236/ojss.2019.99010
C. Song, Y. Guan, D. Wang, D. Zewudie, F. Li (2014) Palygorskite-coated fertilizers with a timely release of nutrients increase potato productivity in a rain-fed cropland, Field Crops Res., 166, 10-17 https://doi.org/10.1016/j.fcr.2014.06.015
L. Tian, J. Liu, X. Guo, L. Li, X. Liu (2013) Effects of water saving materials on soil physical characters and maize yield in loess plateau, Adv. J. Food Sci. Technol., 5(2), 186-191. https://doi.org/10.19026/ajfst.5.3242
M. Pateiro-Moure, J.C. Nóvoa-Muñoz, M. Arias-Estévez, E. López-Periago, E. Martínez-Carballo, J. Simal-Gándara (2009) Quaternary herbicides retention by the amendment of acid soils with a bentonite-based waste from wineries, J. Hazard. Mater., 164(2-3), 769-775. https://doi.org/10.1016/j.jhazmat.2008.08.071
I.M.S. Gajić, S.T. Stojiljković, I.M. Savić, D. Gajić (2014) Industrial applications of clays and clay minerals, In: Clays Clay Miner.: Geol. Orig., Mech. Prop. Ind. Appl., Nova.
H.H. Murray (2006) Structure and composition of clay minerals and their physical and chemical properties, In: Appl. Clay Mineral., 2, 7-31. https://doi.org/10.1016/S1572-4352(06)02002-2
J.C. Masini, G. Abate (2021) Guidelines to study the adsorption of pesticides onto clay minerals aiming at a straightforward evaluation of their removal performance, Minerals, 11(11), 1282. https://doi.org/10.3390/min11111282
T. Undabeytia, U. Shuali, S. Nir, B. Rubin (2020) Applications of chemically modified clay minerals and clays to water purification and slow release formulations of herbicides, Minerals, 11(1), 9. https://doi.org/10.3390/min11010009
S. Nir, Y. El-Nahhal, T. Undabeytia, G. Rytwo, T. Polubesova, Y. Mishael, O. Rabinovitz, B. Rubin (2006) Clays and pesticides, In: Handb. Clay Sci., 685-699. https://doi.org/10.1016/S1572-4352(05)01021-4
S. Nir, Y. El-Nahhal, T. Undabeytia, G. Rytwo, T. Polubesova, Y. Mishael, O. Rabinovitz, B. Rubin (2013) Clays, clay minerals, and pesticides, Dev. Clay Sci., 5, 645-662. https://doi.org/10.1016/B978-0-08-098259-5.00022-6
D. Kovačević, J. Lemić, M. Damjanović, R. Petronijević, D. Janacković, T. Stanić (2011) Fenitrothion adsorption-desorption on organo-minerals, Appl. Clay Sci., 52(1-2), 109-114. https://doi.org/10.1016/j.clay.2011.02.006
A. Damato, F. Vinello, E. Novelli, S. Balzan, M. Gianesella, E. Giaretta, G. Gabai (2022) Comprehensive review on the interactions of clay minerals with animal physiology and production, Front. Vet. Sci., 9. https://doi.org/10.3389/fvets.2022.889612
M. Nadziakiewicz, S. Kehoe, P. Micek (2019) Physico-chemical properties of clay minerals and their use as a health promoting feed additive, Animals, 9(10), 714. https://doi.org/10.3390/ani9100714
R. Slamová, M. Tréková, H. Vondrusková, Z. Zralý, I. Pavlík (2011) Clay minerals in animal nutrition, Appl. Clay Sci., 51, 395-398. https://doi.org/10.1016/j.clay.2011.01.005
Z. Amanzougarene, M. Fondevila (2022) Rumen fermentation of feed mixtures supplemented with clay minerals in a semicontinuous in vitro system, Animals, 12(3), 345. https://doi.org/10.3390/ani12030345
M.D. Subramanium, I.H. Kim (2015) Clays as dietary supplements for swine: A review, J. Anim. Sci. Biotechnol., 6(38). https://doi.org/10.1186/s40104-015-0037-9
N. Zhang, X. Han, Y. Zhao, Y. Li, J. Meng, H. Zhang, J. Liang (2022) Removal of aflatoxin B1 and zearalenone by clay mineral materials: In the animal industry and environment, Appl. Clay Sci., 228, 106614. https://doi.org/10.1016/j.clay.2022.106614
A.A. Al-Arfaj, A.M. Murugan, C. Arunachalam, M.I. Al-Hazmi (2013) Cost-effective bentonite clayed pyramid technologies for household fruits and vegetables storage, J. Food Agric. Environ., 11(2), 175-180.
S. Diblan, M. Özkan (2013) Effects of various clarification agents on the anthocyanins of red wines, GIDA-J. Food, 38(1), 47-54.
M. Kaur, H.K. Sharma, S. Patil, A. Shitandi (2021) Optimization of ethanol concentration, glycerol concentration and temperature conditions of grape-mahua wine to maximize the quality and overall acceptability, J. Microbiol. Biotechnol. Food Sci., 2021, 2426-2430.
E. Lira, F.N. Salazar, J.J. Rodriguez-Bencomo, S. Vincenzi, A. Curioni, F. López (2014) Effect of using bentonite during fermentation on protein stabilisation and sensory properties of white wine, Int. J. Food Sci. Technol., 49(4), 1070-1078. https://doi.org/10.1111/ijfs.12402
M. Lambri, R. Dordoni, M. Giribaldi, M.R. Violetta, M.G. Giuffrida (2012) Heat-unstable protein removal by different bentonite labels in white wines, LWT-Food Sci. Technol., 46(2), 460-467. https://doi.org/10.1016/j.lwt.2011.11.022
Z.X. Li, G.M. Wang, Q. Liang (2013) Preparation and properties of the novel adsorbent agent for juices clarification, Adv. Mater. Res., 791, 248-251. https://doi.org/10.4028/www.scientific.net/AMR.791-793.248
E.L. Foletto, D.S. Paz, A. Gündel (2013) Acid-activation assisted by microwave of a Brazilian bentonite and its activity in the bleaching of soybean oil, Appl. Clay Sci., 83, 63-67. https://doi.org/10.1016/j.clay.2013.08.017
O. Lacin, E. Sayan, E.G. Kirali (2013) Optimization of acid-activated bentonites on bleaching of cotton oil, J. Chem. Soc. Pak., 35(4), 1053-1059.
S. Jeempadiphat, D.N. Tungasmita (2014) Esterification of oleic acid and high acid content palm oil over an acid-activated bentonite catalyst, Appl. Clay Sci., 87, 272-277. https://doi.org/10.1016/j.clay.2013.11.025
F.J. Rodríguez, A. Torres, Á. Peñaloza, H. Sepúlveda, M.J. Galotto, A. Guarda, J. Bruna (2014) Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging, Food Addit. Contam. Part A, 31(3), 342-353. https://doi.org/10.1080/19440049.2013.876105
S.L. Park, S.Y. Lee, H.J. Kim, S.I. Lim, Y.D. Nam, I.M. Kang (2015) Application of clay minerals in the food industry, Econ. Environ. Geol., 48(3), 255-260. https://doi.org/10.9719/EEG.2015.48.3.255
A.K. Jha, A.K. Jha, A.K. Mishra, V. Kumari, B. Mishra (2011) Softening of hard water by bentonite mineral, Asian J. Water Environ. Pollut., 8(4), 93-96. https://doi.org/10.3233/AJW-2011-8_4_12
F.L.G. Hsu, S.P. Zhu, Y.P. Zhu (2006) Aqueous detergent composition containing ethoxylated fatty acid di-ester, U.S. Patent 7,098,175.
M.A. Atieh (2011) Removal of zinc from water using modified and non-modified carbon nanofibers, In: 2nd Int. Conf. Environ. Sci. Technol., 6.
F.J. CarriónFité (2009) The effect of bentonite microparticles in the washing of cotton fabric, In: 9th World Textile Conf. AUTEX 2009, 1180-1186.
M. Ghadiri, W. Chrzanowski, R. Rohanizadeh (2015) Biomedical applications of cationic clay minerals, RSC Adv., 5(37), 29467-29481. https://doi.org/10.1039/C4RA16945J
I.S. Khurana, S. Kaur, H. Kaur, R.K. Khurana (2015) Multifaceted role of clay minerals in pharmaceuticals, Future Sci. OA, 1(3), 45-53. https://doi.org/10.4155/fso.15.6
M.I. Carretero, M. Pozo (2010) Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II.Active ingredients, Appl. Clay Sci., 47(3-4), 171-181. https://doi.org/10.1016/j.clay.2009.10.016
M.I. Carretero, M. Pozo (2009) Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications, Appl. Clay Sci., 46(1), 73-80. https://doi.org/10.1016/j.clay.2009.07.017
N. Selvasudha, U.M. Dhanalekshmi, S. Krishnaraj, Y.H. Sunder, N.S.D. Devi, I. Sarathchandiran (2020) Multifunctional clay in pharmaceuticals, In: Clay Sci. Technol., IntechOpen. https://doi.org/10.5772/intechopen.92408
C. Nomicisio, M. Ruggeri, E. Bianchi, B. Vigani, C. Valentino, C. Aguzzi, C. Viseras, S. Rossi, G. Sandri (2023) Natural and synthetic clay minerals in the pharmaceutical and biomedical fields, Pharmaceutics, 15(5), 1368. https://doi.org/10.3390/pharmaceutics15051368
C. Viseras, R. Sánchez-Espejo, R. Palumbo, N. Liccardi, F. García-Villén, A. Borrego-Sánchez, M. Massaro, S. Riela, A. López-Galindo (2021) Clays in cosmetics and personal-care products, Clays Clay Miner., 69(5), 561-575. https://doi.org/10.1007/s42860-021-00154-5
J.D.D. Moraes, S.R.A. Bertolino, S.L. Cuffini, D.F. Ducart, P.E. Bretzke, G.R. Leonardi (2017) Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review, Int. J. Pharm., 534(1-2), 213-219. https://doi.org/10.1016/j.ijpharm.2017.10.031
M. Massaro, C.G. Colletti, G. Lazzara, S. Riela (2018) The use of some clay minerals as natural resources for drug carrier applications, J. Funct. Biomater., 9(4), 58-62. https://doi.org/10.3390/jfb9040058
M.C. Da Rocha, T. Galdino, P. Trigueiro, L.M. Honorio, R. de Melo Barbosa, S.M. Carrasco, E.C. Silva-Filho, J.A. Osajima, C. Viseras (2022) Clays as vehicles for drug photostability, Pharmaceutics, 14(4), 796. https://doi.org/10.3390/pharmaceutics14040796
T. Ito, T. Sugafuji, M. Maruyama, Y. Ohwa, T. Takahashi (2001) Skin penetration by indomethacin is enhanced by use of an indomethacin/smectite complex, J. Supramol. Chem., 1(4-6), 217-219. https://doi.org/10.1016/S1472-7862(02)00028-X
J.K. Park, Y.B. Choy, J.M. Oh, J.Y. Kim, S.J. Hwang, J.H. Choy (2008) Controlled release of donepezil intercalated in smectite clays, Int. J. Pharm., 359(1-2), 198-204. https://doi.org/10.1016/j.ijpharm.2008.04.012
J.W. McGinity, J.L. Lach (1977) Sustained-release applications of montmorillonite interaction with amphetamine sulfate, J. Pharm. Sci., 66(1), 63-66. https://doi.org/10.1002/jps.2600660115
D. Johnson, B. Gegel, J. Burgett, J. Gasko, C. Cromwell, M. Jaskowska, R. Steward, A. Taylor (2012) The effects of QuikClot Combat Gauze on hemorrhage control, Int. Sch. Res. Notices, 2012. https://doi.org/10.5402/2012/927678
S. Demaneche, L. Jocteur-Monrozier, H. Quiquampoix, P. Simonet (2001) Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA, Appl. Environ. Microbiol., 67(1), 293-299. https://doi.org/10.1128/AEM.67.1.293-299.2001
F.H. Lin, C.H. Chen, W.T. Cheng, T.F. Kuo (2006) Modified montmorillonite as vector for gene delivery, Biomaterials, 27(17), 3333-3338. https://doi.org/10.1016/j.biomaterials.2005.12.029
D. Depan, A.P. Kumar, R.P. Singh (2009) Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite, Acta Biomater., 5(1), 93-100. https://doi.org/10.1016/j.actbio.2008.08.007
C. Mousty (2004) Sensors and biosensors based on clay-modified electrodes-new trends, Appl. Clay Sci., 27(3-4), 159-177. https://doi.org/10.1016/j.clay.2004.06.005
F. Charmantray, N. Touisni, L. Hecquet, C. Mousty (2013) Amperometric biosensor based on galactose oxidase immobilized in clay matrix, Electroanalysis, 25(3), 630-635. https://doi.org/10.1002/elan.201200274
R. Nisticò (2022) A comprehensive study on the applications of clays into advanced technologies, with a particular attention on biomedicine and environmental remediation, Inorganics, 10(3), 40. https://doi.org/10.3390/inorganics10030040
M.P. Gashti, R. Rashidian, A. Almasian, A.B. Zohouri (2013) A novel method for colouration of cotton using clay nano-adsorbent treatment, Pigment Resin Technol., 42(3), 175-185. https://doi.org/10.1108/03699421311317343
M. Parvinzadeh, I. Ebrahimi (2011) Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone, Appl. Surf. Sci., 257(9), 4062-4068. https://doi.org/10.1016/j.apsusc.2010.11.175
M. ParvinzadehGashti, B. Katozian, M. Shaver, A. Kiumarsi (2014) Clay nanoadsorbent as an environmentally friendly substitute for mordants in the natural dyeing of carpet piles, Color. Technol., 130(1), 54-61. https://doi.org/10.1111/cote.12065
C.W.M. Yuen, C.W. Kan, H.L. Lee (2006) Improving wrinkle resistance of cotton fabric by montmorillonite, FibersPolym., 7(2), 139-145. https://doi.org/10.1007/BF02908258
S. Nehra, J.B. Dahiya, S. Kumar (2013) Effect of nanoclays on thermal and flame retardant properties of intumescent coated cotton fabric, Asian J. Res. Chem., 6(7), 676-682.
C.R.S. Oliveira, M.A. Batistella, L.A. Lourenco, S.M.A.G.U. de Souza, A.A. de Souza (2021) Cotton fabric finishing based on phosphate/clay mineral by direct-coating technique and its influence on the thermal stability of the fibers, Prog. Org. Coat., 150, 105949. https://doi.org/10.1016/j.porgcoat.2020.105949
K.A. Buyondo, H. Kasedde, J.B. Kirabira (2022) A comprehensive review on kaolin as pigment for paint and coating: Recent trends of chemical-based paints, their environmental impacts and regulation, Case Stud. Chem. Environ. Eng., 6, 100244. https://doi.org/10.1016/j.cscee.2022.100244
D. Hradil, J. Hradilová, P. Bezdicka (2020) Clay minerals in European painting of the Mediaeval and Baroque periods, Minerals, 10(3), 255. https://doi.org/10.3390/min10030255
B.T. Brooks (1952) Evidence of catalytic action in petroleum formation, Ind. Eng. Chem., 44(11), 2570-2577. https://doi.org/10.1021/ie50515a032
S. Bloch, R.H. Lander, L. Bonnell (2002) Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability, AAPG Bull., 86(2), 301-328. https://doi.org/10.1306/61EEDABC-173E-11D7-8645000102C1865D
M. Lee, J.L. Aronson, S.M. Savin (1985) K/Ar dating of time of gas emplacement in Rotliegendes sandstone, Netherlands, AAPG Bull., 69(9), 1381-1385. https://doi.org/10.1306/AD462C68-16F7-11D7-8645000102C1865D
J. Schoonmaker, F.T. Mackenzie, R.C. Speed (1986) Tectonic implications of illite/smectite diagenesis, Barbados accretionary prism, Clays Clay Miner., 34(4), 465-472. https://doi.org/10.1346/CCMN.1986.0340413
V.A. Drits, H. Lindgreen, B.A. Sakharov, H.J. Jakobsen, A.L. Salyn, L.G. Dainyak (2002) Tobelitization of smectite during oil generation in oil-source shales, Clays Clay Miner., 50(1), 82-98. https://doi.org/10.1346/000986002761002702
S. Jiang (2012) Clay minerals from the perspective of oil and gas exploration, Clay Miner. Nat., 21-38.https://doi.org/10.5772/47790
N.B. Singh (2022) Clays and clay minerals in the construction industry, Minerals, 12(3), 301.https://doi.org/10.3390/min12030301
M. Ahmad, K. Rashid (2022) Novel approach to synthesize clay-based geopolymer brick: Optimizing molding pressure and precursors' proportioning, Constr. Build. Mater., 322, 126472. https://doi.org/10.1016/j.conbuildmat.2022.126472
G.J. Churchman, W.P. Gates, B.K.G. Theng, G. Yuan (2006) Clays and clay minerals for pollution control, Dev. Clay Sci., 1, 625-675. https://doi.org/10.1016/S1572-4352(05)01020-2
B. Sarkar, R. Rusmin, U.C. Ugochukwu, R. Mukhopadhyay, K.M. Manjaiah (2019) Modified clay minerals for environmental applications, Modif. Clay Zeolite Nanocompos.Mater., 113-127. https://doi.org/10.1016/B978-0-12-814617-0.00003-7
M.K. Uddin (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308, 438-462. https://doi.org/10.1016/j.cej.2016.09.029
B.O. Otunola, O.O. Ololade (2020) A review on the application of clay minerals as heavy metal adsorbents for remediation purposes, Environ. Technol. Innov., 18, 100692. https://doi.org/10.1016/j.eti.2020.100692
S. Barakan, V. Aghazadeh (2021) The advantage of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: A review, Environ. Sci. Pollut. Res., 28(3), 2572-2599. https://doi.org/10.1007/s11356-020-10985-9
E. Wierzbicka, K. Kušmierek, A. Šwiatkowski, I. Legocka (2022) Efficient Rhodamine B dye removal from water by acid- and organo-modified halloysites, Minerals, 12(3), 350. https://doi.org/10.3390/min12030350
A.K. Dhar, H.A. Himu, M. Bhattacharjee, M.G. Mostufa, F. Parvin (2023) Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: A review, Environ. Sci. Pollut. Res., 30(3), 5440-5474. https://doi.org/10.1007/s11356-022-24277-x
N. Chouikhi, J.A. Cecilia, E. Vilarrasa-Garcia, S. Besghaier, M. Chlendi, F.I. Franco Duro, E. Rodriguez Castellon, M. Bagane (2019) CO2 adsorption of materials synthesized from clay minerals: A review, Minerals, 9(9), 514. https://doi.org/10.3390/min9090514
E. Haque, M.M. Islam, E. Pourazadi, S. Sarkar, A.T. Harris, A.I. Minett, E. Yanmaz, S.M. Alshehri, Y. Ide, K.C.W. Wu, Y.V. Kaneti (2017) Boron-functionalized graphene oxide-organic frameworks for highly efficient CO2 capture, Chem. Asian J., 12(3), 283-288. https://doi.org/10.1002/asia.201601442
K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long (2012) Carbon dioxide capture in metal-organic frameworks, Chem. Rev., 112(2), 724-781. https://doi.org/10.1021/cr2003272
J.S. Loring, H.T. Schaef, R.V. Turcu, C.J. Thompson, Q.R. Miller, P.F. Martin, J. Hu, D.W. Hoyt, O. Qafoku, E.S. Ilton, A.R. Felmy (2012) In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide, Langmuir, 28(18), 7125-7128. https://doi.org/10.1021/la301136w
L. Michels, J.O. Fossum, Z. Rozynek, H. Hemmen, K. Rustenberg, P.A. Sobas, G.N. Kalantzopoulos, K.D. Knudsen, M. Janek, T.S. Plivelic, G.J. da Silva (2015) Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations, Sci. Rep., 5, 8775. https://doi.org/10.1038/srep08775
H.K. Christenson (1993) Adhesion and surface energy of mica in air and water, J. Phys. Chem., 97(46), 12034-12041. https://doi.org/10.1021/j100148a032
J.A. Cecilia, E. Vilarrasa-Garcia, C.L. Cavalcante Jr., D.C.S. Azevedo, F. Franco, E. Rodriguez-Castellon (2018) Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture, J. Environ. Chem. Eng., 6(4), 4573-4587. https://doi.org/10.1016/j.jece.2018.07.001
G. Gómez-Pozuelo, E.S. Sanz-Pérez, A. Arencibia, P. Pizarro, R. Sanz, D.P. Serrano (2019) CO2 adsorption on amine-functionalized clays, Microporous Mesoporous Mater., 282, 38-47. https://doi.org/10.1016/j.micromeso.2019.03.012
F. Franco, M. Pozo, J.A. Cecilia, M. Benítez-Guerrero, E. Pozo, J.M. Rubi (2014) Microwave assisted acid treatment of sepiolite: The role of composition and "crystallinity", Appl. Clay Sci., 102, 15-27. https://doi.org/10.1016/j.clay.2014.10.013
K.J. Shah, T. Imae (2016) Analytical investigation of specific adsorption kinetics of CO2 gas on dendrimer loaded in organoclays, Chem. Eng. J., 283, 1366-1373. https://doi.org/10.1016/j.cej.2015.08.113
K.J. Shah, T. Imae, M. Ujihara, S.J. Huang, P.H. Wu, S.B. Liu (2017) Poly(amido amine) dendrimer-incorporated organoclays as efficient adsorbents for capture of NH3 and CO2, Chem. Eng. J., 312, 118-125. https://doi.org/10.1016/j.cej.2016.11.125
D. Kibanova, M. Trejo, H. Destaillats, J. Cervini-Silva (2009) Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants, Appl. Clay Sci., 42(3-4), 563-568. https://doi.org/10.1016/j.clay.2008.03.009
E. Manova, P. Aranda, M.A. Martin-Luengo, S. Letaief, E. Ruiz-Hitzky (2010) New titania-clay nanostructured porous materials, Microporous Mesoporous Mater., 131(1-3), 252-260. https://doi.org/10.1016/j.micromeso.2009.12.031
B. Paul, W.N. Martens, R.L. Frost (2012) Immobilized anatase on clay mineral particles as a photocatalyst for herbicides degradation, Appl. Clay Sci., 57, 49-54. https://doi.org/10.1016/j.clay.2011.12.009
D. Papoulis, S. Komarneni, A. Nikolopoulou, P. Tsolis-Katagas, D. Panagiotaras, H.G. Kacandes, P. Zhang, S. Yin, T. Sato, H. Katsuki (2010) Palygorskite- and halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity, Appl. Clay Sci., 50(1), 118-124. https://doi.org/10.1016/j.clay.2010.07.013
P. Aranda, R. Kun, M.A. Martin-Luengo, S. Letaief, I. Dekány, E. Ruiz-Hitzky (2008) Titania-sepiolite nanocomposites prepared by a surfactant templating colloidal route, Chem. Mater., 20(1), 84-91. https://doi.org/10.1021/cm702251f
M. Valášková, J. Tokarský, J. Pavlovský, T. Prostějovský, K. Kočí (2019) α-Fe2O3 nanoparticles/vermiculite clay material: Structural, optical and photocatalytic properties, Materials, 12(11), 1880. https://doi.org/10.3390/ma12111880
Y. Guo, W. Yu, J. Chen, X. Wang, B. Gao, G. Wang (2017) Ag3PO4/rectorite nanocomposites: Ultrasound-assisted preparation, characterization and enhancement of stability and visible-light photocatalytic activity, Ultrason. Sonochem., 34, 831-838. https://doi.org/10.1016/j.ultsonch.2016.07.017
H. Peng, X. Liu, W. Tang, R. Ma (2017) Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties, Sci. Rep., 7, 2251. https://doi.org/10.1038/s41598-017-02501-w
Y. Guo, C. Li, Y. Guo, X. Wang, X. Li (2019) Ultrasonic-assisted synthesis of mesoporous g-C3N4/Na-bentonite composites and its application for efficient photocatalytic simultaneous removal of Cr(VI) and RhB, Colloids Surf. A, 578, 123624. https://doi.org/10.1016/j.colsurfa.2019.123624
M. Akkari, P. Aranda, A. Amara, E. Ruiz-Hitzky (2018) Clay-nanoarchitectures as photocatalysts by in situ assembly of ZnO nanoparticles and clay minerals, J. Nanosci. Nanotechnol., 18(1), 223-233. https://doi.org/10.1166/jnn.2018.14613
Y. Shi, Y. Hu, L. Zhang, Z. Yang, Q. Zhang, H. Cui, X. Zhu, J. Wang, J. Chen, K. Wang (2017) Palygorskite supported BiVO4 photocatalyst for tetracycline hydrochloride removal, Appl. Clay Sci., 137, 249-258. https://doi.org/10.1016/j.clay.2016.12.035
C. Huo, H. Yang (2013) Preparation and enhanced photocatalytic activity of Pd-CuO/palygorskite nanocomposites, Appl. Clay Sci., 74, 87-94. https://doi.org/10.1016/j.clay.2012.07.001
C. Belver, J. Bedia, J.J. Rodriguez (2017) Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants, J. Hazard. Mater., 322, 233-242. https://doi.org/10.1016/j.jhazmat.2016.02.028
C. Belver, C. Han, J.J. Rodriguez, D.D. Dionysiou (2017) Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine, Catal. Today, 280, 21-28. https://doi.org/10.1016/j.cattod.2016.04.029
B. Caglar, E.K. Guner, K. Keles, K.V. Özdokur, O. Cubuk, F. Coldur, S. Caglar, C. Topcu, A. Tabak (2018) Fe3O4 nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities, Solid State Sci., 83, 122-136. https://doi.org/10.1016/j.solidstatesciences.2018.07.013
C. Zhang, X. Han, F. Wang, L. Wang, J. Liang (2021) A facile fabrication of ZnFe2O4/sepiolite composite with excellent photocatalytic performance on the removal of tetracycline hydrochloride, Front. Chem., 9, 736369. https://doi.org/10.3389/fchem.2021.736369
B. John, K.K. Naira, K.A. Krishnan (2023) Synthesis and application of a thiol functionalized clay for borewell water purification: Microchemical characteristics and adsorption studies, Chem. Eng. Res. Des., 190, 33-53. https://doi.org/10.1016/j.cherd.2022.11.054
M. Ghadiri, W. Chrzanowski, W.H. Lee, R. Rohanizade (2014) Layered silicate clay functionalized with amino acids: Wound healing application, RSC Adv., 4(67), 35332-35343. https://doi.org/10.1039/C4RA05216A
M. Hnamte, A.K. Pulikkal (2022) Clay-polymer nanocomposites for water and wastewater treatment: A comprehensive review, Chemosphere, 307, 135869. https://doi.org/10.1016/j.chemosphere.2022.135869
N. Worasith, B.A. Goodman (2023) Clay mineral products for improving environmental quality, Appl. Clay Sci., 242, 106980. https://doi.org/10.1016/j.clay.2023.106980
M. Malovanyy, O. Blazhko, H. Sakalova, T. Vasylinych (2021) Ecological aspects of clay sorption materials usage in leather and fur production technologies, Mater. Sci. Forum, 1038, 276-281. https://doi.org/10.4028/www.scientific.net/MSF.1038.276
G. Sanchez-Olivares, F. Calderas, L. Medina-Torres, A. Sanchez-Solis, A. Rivera-Gonzaga, O. Manero (2015) Clay minerals and clay mineral water dispersions-properties and applications, In: Clays, Clay Miner. Ceram.Mater.Based Clay Miner., IntechOpen. https://doi.org/10.5772/61588
E.J. Serge, J.P. Alla, P.D.B. Belibi, K.J. Mbadeam, N.N. Fathima (2019) Clay/polymer nanocomposites as filler materials for leather, J. Clean. Prod., 237, 117837. https://doi.org/10.1016/j.jclepro.2019.117837
Y. Zhou, A.M. Lachance, A.T. Smith, H. Cheng, Q. Liu, L. Sun (2019) Strategic design of clay-based multifunctional materials: From natural minerals to nanostructured membranes, Adv. Funct. Mater., 29(45), 1807611. https://doi.org/10.1002/adfm.201807611
F.J. CarriónFité (2009) The effect of bentonite microparticles in the washing of cotton fabric, In: 9th World Textile Conf. AUTEX 2009, 1180-1186.