Overview of corrosion behaviour of ceramic materials in molten salt environments

Authors

  • Agha Inya Ndukwe 1Department of Materials & Metallurgical Engineering, Federal University of Technology, Owerri, Nigeria Author https://orcid.org/0000-0002-1723-7026
  • Chukwuma Daniel Okolo 1Department of Materials & Metallurgical Engineering, Federal University of Technology, Owerri, Nigeria Author
  • Benjamin Uchenna Nwadirichi 1Department of Materials & Metallurgical Engineering, Federal University of Technology, Owerri, Nigeria Author

DOI:

https://doi.org/10.62638/ZasMat1128

Keywords:

hot corrosion, alumina, heat exchangers, nitrides, zirconia

Abstract

This study reviewed previous studies between the years 2015 and 2021 on how ceramic materials degraded in the presence of molten salt environments. The processes of corrosion resistance of various ceramic compositions subjected to various molten salt compositions and temperatures were also scrutinized. The results offer important new insights into the variables affecting ceramics' corrosion behaviour and the production of corrosion products.  The reported result reveals that the ceramic material with the composition (Sm0.5Sc0.5)2Zr2O7 performed better than that of Sm2Zr2O7 in terms of hot corrosion resistance in molten salt (V2O5 + Na2SO4). It has also been reported that corrosion behaviour is influenced by particle size. Notably, zirconia (n-YSZ) with nanoscale grain sizes was more susceptible to hot corrosion, which was explained by increased specific surface areas. On the other hand, sintering and additives have been found to enhance corrosion resistance. The Y-Y2Si2O7 ceramic's resistance to corrosion in (V2O5 + Na2SO4) molten salt was enhanced by the addition of alumina. The results of these investigations help us understand how corrosion works and what influences ceramic materials' susceptibility to deterioration in molten salt media. This information can direct the creation of more corrosive-resistant ceramic materials for use in high-temperature environments or molten salt-based energy systems, among other corrosive uses.

References

R. A. Rapp (2002) Hot corrosion of materials: A fluxing mechanism? Corrosion Science, 44(2), 209–221, https://doi.org/10.1016/S0010-938X(01)00057-9

D. A. Shifler (2018) Hot corrosion: A modification of reactants causing degradation. Materials at High Temperatures, 35(1–3), 225–235, https://doi. org/10.1080/09603409.2017.1404692

R. François, I. Khan, V. H. Dang (2013) Impact of corrosion on mechanical properties of steel embedded in 27-year-old corroded reinforced concrete beams. Materials and Structures, 46(6), 899–910, https://doi.org/10.1617/s11527-012-9941-z

A. I. Ndukwe (2022) Green inhibitors for corrosion of metals in acidic media: A review. Academic journal of manufacturing engineering, 20(2), 36–50, https://ajme.ro/PDF_AJME_2022_2/L5.pdf

A. I. Ndukwe, C. N. Anyakwo (2017) Modelling of corrosion inhibition of mild steel in hydrochloric acid by crushed leaves of sida acuta (malvaceae). The International Journal of Engineering and Science, 6(1), 22–33, http://www.theijes.com/papers/vol6-issue1/Version-3/D0601032233.pdf

A. I. Ndukwe, C. N. Anyakwo (2017) Predictive model for corrosion inhibition of mild steel in HCl by crushed leaves of clerodendrum splendens. International Research Journal of Engineering and Technology, 4(2), 679–688, https://irjet.net/ archives/V4/i2/IRJET-V4I2129.pdf

A. I. Ndukwe, C. N. Anyakwo (2017) Modelling of corrosion inhibition of mild steel in sulphuric acid by thoroughly crushed leaves of voacanga Africana (apocynaceae). American Journal of Engineering Research, 6(1), 344–356, http://www.ajer. org/papers / v6 (01)/ ZX060344356. pdf

A. I. Ndukwe, C. N. Anyakwo (2017) Corrosion inhibition model for mild steel in sulphuric acid by crushed leaves of clerodendrum splendens (verbenaceae). International Journal of Scientific Engineering and Applied Science, 3(3), 39–49, http://ijseas.com/volume3/v3i3/ijseas20170305.pdf

A. I. Ndukwe, C. N. Anyakwo (2017) Predictive Corrosion-Inhibition Model for Mild Steel in Sulphuric Acid (H2SO4) by Leaf-Pastes of Sida Acuta Plant. Journal of Civil, Construction and Environmental Engineering, 2(5), 123–133, https://doi.org/10.11648/j.jccee.20170205.11

A. I. Ndukwe, N. E. Dan, J. U. Anaele, C. C. Ozoh, K. Okon, P. C. Agu (2023) The inhibition of mild steel corrosion by papaya and neem extracts. Zastita Materijala, 64(3), 274–282, https:// doi.org/10.5937/zasmat2303274N

A.I. Ndukwe, Ihuoma, C. Akuwudike, D. O. Oluehi, F. A. Akaneme, E. U. Chibiko (2023) Predictive model for the corrosion inhibition of mild steel in 1.5 m HCl by the leaf-juice of Carica papaya, Zastita Materijala, 64(4), Accepted for publication

C. N. Anyakwo, A. I. Ndukwe (2017) Mathematical model for corrosion inhibition of mild steel in hydrochloric acid by crushed leaves of tridaxp-rocumbens (asteraceae). International journal of science and engineering investigations. Interna-tional Journal of Science and Engineering Investi-gations, 6(65), 81–89, http://www.ijsei.com/papers/ ijsei- 66517-13.pdf

C. N. Anyakwo, A. I. Ndukwe (2017) Prognostic model for corrosion-inhibition of mild steel in hydrochloric acid by crushed leaves of voacanga Africana. International Journal of Computational and Theoretical Chemistry, 5(3), 30-41. doi: 10.11648/ j.ijctc.20170503.12

A. Valenzuela-Gutiérrez, J. López-Cuevas, A. González-Ángeles, N. Pilalua-Díaz (2019) Addition of ceramics materials to improve the corrosion resistance of alumina refractories. SN Applied Sciences, 1(7), 784-791, https://doi.org/10. 1007/s42452-019-0789-5

N. S. Jacobson, J. L. Smialek,D. S. Fox (1994) Molten Salt Corrosion of Ceramics. In K. G. Nickel (Ed.), Corrosion of Advanced Ceramics: Measurement and Modelling Proceedings of the NATO Advanced Research Workshop on Corrosion of Advanced Ceramics Tübingen, Germany August 30–September 3, 1993 , p. 205–222). Springer Netherlands, https://doi.org/10.1007/978-94-011-1182-9_16

J. M. Schoenung (2001) Structural Ceramics. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology, p.8921–8926. Elsevier, https://doi.org/10.1016/B0-08-043152-6/01605-3

D. P. Kaur, S. Raj, M. Bhandari (2022) Chapter 2—Recent advances in structural ceramics. In S. Singh, P. Kumar, & D. P. Mondal (Eds.), Advanced Ceramics for Versatile Interdisciplinary Applications, p.15–39. Elsevier, https://doi.org/10.1016/B978-0-323-89952-9.00008-7

X. Q. Cao, R. Vassen, D. Stoever (2004) Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 24(1), 1–10. https://doi.org/10.1016/S0955-2219 (03)00129-8

I. Gurrappa, A. Sambasiva Rao (2006) Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surface and Coatings Technology, 201(6), 3016–3029, https://doi.org/ 10.1016/j. surfcoat. 2006.06.026

M. Herrmann, H. Klemm (2014) 2.15—Corrosion of Ceramic Materials. In V. K. Sarin (Ed.), Comprehensive Hard Materials, p.413–446. Elsevier, https://doi.org/10.1016/B978-0-08-096527-7.00034-9

C. Falconer, M. Elbakhshwan (n.d.) Corrosion in Molten Salt Reactors – The UW-Madison Materials Degradation under COrrosion and Radiation (MADCOR) – UW–Madison. Retrieved July 12, 2023, from https://madcor.labs.wisc.edu/previous-work/corrosion-in-molten-salt-reactors/

Y. Iwadate (2014) Chapter 260—Structures and Properties of Rare-Earth Molten Salts. In J.-C. G. Bünzli & V. K. Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare Earths, 44, 87–168). Elsevier, https://doi.org/10.1016/B978-0-444-62711-7.00260-7

F. Ropital (2011) 15 - Environmental degradation in hydrocarbon fuel processing plant: Issues and mitigation. In M. R. Khan (Ed.), Advances in Clean Hydrocarbon Fuel Processing (pp. 437–462). Woodhead Publishing, https://doi.org/10.1533/ 9780857093783.5.437

A. Ibrahim, H. Peng, A. Riaz, M. Abdul Basit, U. Rashid, A. Basit (2021) Molten salts in the light of corrosion mitigation strategies and embedded with nanoparticles to enhance the thermophysical properties for CSP plants. Solar Energy Materials and Solar Cells, 219, 110768, https:// doi. org/10.1016/j.solmat.2020.110768

X. H. Wang, Y. C. Zhou (2004) Hot Corrosion of Na2SO4-Coated Ti3AlC2 in Air at 700-1000°C. Journal of The Electrochemical Society, 151(9), B505. https://doi.org/10.1149/1.1778171

G. Liu, M. Y. Zhou (2003) Hot corrosion of Ti3SiC2-based ceramics coated with Na2SO4 at 900 and 1000 °C in air. Corrosion Science, 45(6), 1217–1226, https://doi.org/10.1016/S0010-938X(02)00211-1

N. Wu, Z. Chen, S. X. Mao (2005) Hot Corrosion Mechanism of Composite Alumina/Yttria-Stabilized Zirconia Coating in Molten Sulfate–Vanadate Salt. Journal of the American Ceramic Society, 88(3), 675–682, https://doi.org/10.1111/j.1551-2916. 2005. 00120.x

G. Liu, M. Li, Y. Zhou, Y. Zhang (2005) Hot corrosion behavior of Ti3SiC2 in the mixture of Na2SO4–NaCl melts. Journal of the European Ceramic Society, 25(7), 1033–1039, https://doi.org/ 10.1016/j. jeurceramsoc.2004.04.013

X. Xie, H. Guo, S. Gong, H. Xu (2012) Hot Corrosion Behavior of Double-ceramic-layer LaTi2Al9O19/YSZ Thermal Barrier Coatings. Chinese Journal of Aeronautics, 25(1), 137–142, https://doi.org/10.1016/S1000-9361(11)60372-5

R. A. McCauley (2013) Corrosion of Ceramic Materials, Third Edition. CRC Press.

Z. Lin, Y. Zhou, M. Li, M. J. Wang. (2006) Hot corrosion and protection of Ti2AlC against Na2SO4 salt in air. Journal of the European Ceramic Society, 26(16), 3871–3879, https://doi.org/10.1016/j. jeurceramsoc.2005.12.004

J. L. Tristancho-Reyes, J. G. Chacón-Nava, D. Y. Peña-Ballesteros, C. Gaona-Tiburcio, J. G. Gonzalez-Rodriguez, A. Martínez-Villafañe, F. Almeraya-Calderón (2011) Hot Corrosion Behaviour of NiCrFeNbMoTiAl Coating in Molten Salts at 700°C by Electrochemical Techniques. International Journal of Electrochemical Science, 6(2), 432–441, https://doi.org/10.1016/S1452-3981(23)15006-1

Z. Xu, L. He, R. Mu, S. He, G. Huang, X. Cao (2010) Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings. Surface and Coatings Technology, 204(21), 3652–3661, https://doi. org/10.1016/j.surfcoat.2010.04.044

K. Sridharan, T. R. Allen (2013) Corrosion in Molten Salts. In F. Lantelme & H. Groult (Eds.), Molten Salts Chemistry, p. 241–267),. Elsevier, https://doi.org/10.1016/ B978-0-12-398538-5.00012-3

M. H. Habibi, L. Wang, S. M. Guo (2012) Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7+YSZ composite thermal barrier coatings in Na2SO4+V2O5 at 1050°C. Journal of the European Ceramic Society, 32(8), 1635–1642, https://doi.org/10.1016/j. jeurceramsoc.2012.01.006

F. A. Costa Oliveira, D. J. Baxter (2001) Salt corrosion of a hot-pressed silicon nitride in combustion environments with different sulphur contents. Materials at High Temperatures, 18(1), 21–37, https://doi.org/10.1179/mht.2001.003

D. Brito-Hernádez, I. Rosales-Cadena, J. G. Gónzalez-Rodríguez, J.Uruchurtu-Chavarín, R. Guardían-Tapia,, J. G. Vera-Dimas, R. López-Sesenes (2023) Effect of zirconia in the corrosion behavior of intermetallic Mo3Si alloy in molten salts mixture of NaNO3 and KNO3. Materials and Corrosion, 74(7), 1066–1075, https://doi.org/10. 1002/maco.202213223

S. Li, Z. G. Liu, J. H. Ouyang. (2013) Growth of YbVO4 crystals evolved from hot corrosion reactions of Yb2Zr2O7 against V2O5 and Na2SO4+V2O5. Applied Surface Science, 276, 653–659, https://doi.org/ 10.1016/j.apsusc.2013. 03.149

L. Guo, M. Li, F. Ye (2016) Comparison of hot corrosion resistance of Sm2Zr2O7 and (Sm0.5Sc0.5)2Zr2O7 ceramics in Na2SO4+V2O5 molten salt. Ceramics International, 42(12), 13849–13854. https://doi.org/10.1016/j.ceramint.2016.05.190

L. Guo, C. Zhang, M. Li, W. Sun, Z. Zhang, F. Ye (2017) Hot corrosion evaluation of Gd2O3-Yb2O3 co-doped Y2O3 stabilized ZrO2 thermal barrier oxides exposed to Na2SO4+V2O5 molten salt. Ceramics International, 43(2), 2780–2785, https://doi.org/10.1016/j.ceramint.2016.11.109

J. Wang, J. Sun, B. Zou, X Zhou, S. Dong, L. Li, J. Jiang, L. Deng, X. Cao- (2017) Hot corrosion behaviour of nanostructured zirconia in molten NaVO3 salt. Ceramics International, 43(13), 10415–10427, https://doi.org/10.1016/j.ceramint.2017.05.077

Y. Ozgurluk, K. Doleker, D. Ozkan, H. Ahlatci, A. Karaoglanli (2019) Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts. Coatings, 9(3), 166, https://doi.org/10.3390/ coatings9030166

S. H. Cho, S. W. Kim, D. Y. Kim, J. H. Lee, J. M. Hur. (2017) Hot corrosion behavior of magnesia-stabilized ceramic material in a lithium molten salt. Journal of Nuclear Materials, 490, 85–93, https://doi.org/10.1016/j.jnucmat.2017.04.012

X. Fan, R. Sun, J. Dong, L. Wei, Q. Wang (2021) Effects of sintering additives on hot corrosion behavior of γ-Y2Si2O7 ceramics in Na2SO4+V2O5 molten salt. Journal of the European Ceramic Society, 41(1), 517–525, https://doi.org/ 10.1016/ j.jeurceramsoc.2020.08.068

C.Zhang, M.Li, Y.Zhang, L.Guo, J.Dong, F. Ye, L.Li, V.Ji (2017) Hot corrosion behavior of (Gd0.9Sc0.1)2Zr2O7 in V2O5 molten salt at 700–1000 °C. Ceramics International, 43(12), 9041–9046, https://doi.org/ 10.1016/j.ceramint.2017.04.048

H. Liu, J. Cai, J. Zhu (2019) Hot Corrosion Behavior of BaLa2Ti3O10 Thermal Barrier Ceramics in V2O5 and Na2SO4 + V2O5 Molten Salts. Coatings, 9(6), 351, https://doi.org/10.3390/coatings9060351

W. B. Kim, S. C. Kwon, S. H. Cho, J. H. Lee (2020) Effect of the grain size of YSZ ceramic materials on corrosion resistance in a hot molten salt CaCl2-CaF2-CaO system. Corrosion Science, 170, 108664.https://doi.org/10.1016/ j.corsci.2020.108664

S. Gu, S. Zhang, Y. Jia, W. Li, J. Yan (2017) Evaluation of hot corrosion behavior of SrHfO3 ceramic in the presence of molten sulfate and vanadate salt. Journal of Alloys and Compounds, 728, 10–18, https://doi.org/10.1016/ j.jallcom. 201708.279

X. Zhou, Z. Xu, L. He, J. Xu, B. Zou, X. Cao (2016) Hot corrosion behavior of LaTi2Al9O19 ceramic exposed to vanadium oxide at temperatures of 700–950 °C in air. Corrosion Science, 104, 310–318, https://doi.org/10.1016/ j.corsci.2015.12.024

J. Zhang, J. Huang, R. Liu, G. Luo, Q. Shen (2021) Corrosion behaviour of AlN ceramics in LiF-LiCl-LiBr-Li molten salt at 500 °C. Corrosion Science, 190, 109672, https://doi.org/10.1016/j.corsci. 2021. 109672

F. Jiang, L. Cheng, Y. Wang, X. Huang (2017) Hot corrosion behaviour of barium-strontium aluminosilicates in a molten Na2SO4 environment. Journal of the European Ceramic Society, 37(2), 823–832, https://doi.org/10.1016/ j.jeurceramsoc. 2016.09.007

S. Gu, S. Zhang, Y. Jia, W. Li, J. Yan (2017) Evaluation of hot corrosion behavior of SrHfO3 ceramic in the presence of molten sulfate and vanadate salt. Journal of Alloys and Compounds, 728, 10–18. https://doi.org/10.1016/j.jallcom. 2017. 08.279

A. Shamsipoor, M. Farvizi, M. Razavi, A. Keyvani, B. Mousavi, W. Pan (2021) Hot corrosion behavior of Cr2AlC MAX phase and CoNiCrAlY compounds at 950 °C in presence of Na2SO4+V2O5 molten salts. Ceramics International, 47(2), 2347–2357, https://doi.org/10.1016/ j.ceramint.2020.09.077

Y. Ozgurluk, K. M. Doleker, A. C. Karaoglanli (2018) Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Applied Surface Science, 438, 96–113, https://doi.org/10. 1016/j.apsusc.2017.09.047

Y. Hui, S. Zhao, J. Xu, B. Zou, Y. Wang, X. Cai, L. Zhu, X. Cao (2016) High-temperature corrosion behavior of zirconia ceramic in molten Na2SO4+NaVO3 salt mixture. Ceramics International, 42(1), 341–350, https://doi.org/10. 1016/j.ceramint.2015.08.116

L.Guo, C.Zhang, Q.He, J.Yu, Z.Yan, F.Ye, C. Dan, V.Ji (2018) Microstructure evolution and hot corrosion mechanisms of Ba2REAlO5 (RE = Yb, Er, Dy) exposed to V2O5 + Na2SO4 molten salt. Journal of the European Ceramic Society, 38(10), 3555–3563, https://doi.org/10.1016/j.jeurceramsoc.2018.03.047

Y. Zhang, B. Zou, X. Cai, Y. Wang, X. Cao (2020) Hot corrosion behavior of Yb2Si2O7 ceramic under NaVO3 salt attack. Ceramics International, 46(3), 2618–2623, https://doi.org/10.1016/ j.ceramint. 2019.09.070[58]

Downloads

Published

15-06-2024

Issue

Section

Review Paper