Examining the impact of anisotropic particle orientation in a polymer matrix on the electrical properties of composite materials

Authors

  • Anna Stepashkina Zhejiang Lab, Kechuang Avenue, Zhongtai Sub-District, Yuhang District, Hangzhou, Zhejiang Province, P.R. China Author
  • Khurram Shehzad Zhejiang Lab, Kechuang Avenue, Zhongtai Sub-District, Yuhang District, Hangzhou, Zhejiang Province, P.R. China Author

DOI:

https://doi.org/10.62638/ZasMat1110

Keywords:

Polymer composite materials, anisotropic fillers, electrical conductivity, stretching, Monte Carlo simulation

Abstract

A number of works have experimentally shown the significant influence of mechanical stretching on the electrically conductive properties of composite polymer materials. Thus, stretching polymer composite films and filaments can lead to deterioration in electrical conductivity properties which can significantly affect the characteristics of products made from such materials. The research conducted in this study focuses on simulation the impact of anisotropic particle orientation within a polymer matrix and mechanical stretching on the electrical properties of composite materials. Based on the Boltzmann statistics, an expression was obtained that allows predicting the change in electrical conductivity during the stretching of polymer composite samples. The Monte Carlo method was used to simulate the destruction of a percolation chain of conductive particles during stretching.

References

S. Zhou, A. Hrymak, M. Kamal. "Electrical and morphological properties of microinjection molded polypropylene/carbon nanocomposites." Journal of Applied Polymer Science 134, no. 43 (2017): 45462. https://doi.org/10.1002/app.45462.

D. Youngá Lim. "Fabrication of a stretchable electromagnetic interference shielding silver nanoparticle/elastomeric polymer composite." RSC Advances 6, no. 57 (2016): 52250-52254. https://doi.org/10.1039/C6RA04765C.

L.d.S. Vieira, E.G.E.d Anjos, G.E.A. Verginio, I.C. Oyama, N.F. Braga, T.F. Silva, L.S. Montagna, F.R. Passador. "A review concerning the main factors that interfere in the electrical percolation threshold content of polymeric antistatic packaging with carbon fillers as antistatic agent." Nano Select 3, no. 2 (2022): 248-260. https://doi.org/10.1002/nano.202100073.

A. Tarhini, A.R. Tehrani-Bagha. "Advances in preparation methods and conductivity properties of graphene-based polymer composites." Applied Composite Materials 30, no. 6 (2023): 1737-1762. https://doi.org/10.1007/s10443-023-10145-5.

Y. Yao, X. Zheng, G. Pan, J. Sun, J. Hu, Y. Huang, R. Sun, J.-B. Xu, C.-P. Wong. "Interfacial engineering of silicon carbide nanowire/cellulose microcrystal paper toward high thermal conductivity." ACS Applied Materials & Interfaces 8, no. 45 (2016): 31248-31255. https://doi.org/10.1021/acsami.6b10935.

D. Xiang, E. Harkin-Jones, D. Linton, P. Martin. "Structure, mechanical, and electrical properties of high‐density polyethylene/multi‐walled carbon nanotube composites processed by compression molding and blown film extrusion." Journal of Applied Polymer Science 132, no. 42 (2015): 42665. https://doi.org/10.1002/app.42665.

N. Ucar, B.K. Kayaoglu, A. Bilge, G. Gurel, P. Sencandan, S. Parker. "Electromagnetic shielding effectiveness of carbon fabric/epoxy composite with continuous graphene oxide fiber and multiwalled carbon nanotube." Journal of Composite Materials 52, no. 24 (2018): 3341-3350. https://doi.org/10.1177/0021998318765273.

R. Taherian. "Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites." Composites Science and Technology 123 (2016): 17-31. https://doi.org/10.1016/j.compscitech.2015.11.029.

A. Stepashkina, E. Tsobkallo, A. Alyoshin. "Electrical conductivity modeling and research of polypropylene composites filled with carbon black." Journal of Physics: Conference Series 572 (2014): 012032. https://doi.org/10.1088/1742-6596/572/1/012032.

S. Maiti, S. Suin, N.K. Shrivastava, B.B. Khatua. "A strategy to achieve high electromagnetic interference shielding and ultra low percolation in multiwall carbon nanotube–polycarbonate composites through selective localization of carbon nanotubes." RSC Advances 4, no. 16 (2014): 7979-7990. https://doi.org/10.1039/C3RA46480F.

L. Li, D. Chung. "Electrical and mechanical properties of electrically conductive polyethersulfone composites." Composites 25, no. 3 (1994): 215-224. https://doi.org/10.1016/0010-4361(94)90019-1.

M. Fogel, P. Parlevliet, M. Geistbeck, P. Olivier, E. Dantras. "Thermal, rheological and electrical analysis of MWCNTs/epoxy matrices." Composites Science and Technology 110 (2015): 118-125. https://doi.org/10.1016/j.compscitech.2015.02.002.

K. Bhaskaran, R.K. Bheema, K.C. Etika. "The influence of Fe3O4@ GNP hybrids on enhancing the EMI shielding effectiveness of epoxy composites in the X-band." Synthetic Metals 265 (2020): 116374. https://doi.org/10.1016/j.synthmet.2020.116374.

P. Bhardwaj, A.N. Grace. "Antistatic and microwave shielding performance of polythiophene-graphene grafted 3-dimensional carbon fibre composite." Diamond and Related Materials 106 (2020): 107871. https://doi.org/10.1016/j.diamond.2020.107871.

M.H. Al-Saleh, U. Sundararaj. "A review of vapor grown carbon nanofiber/polymer conductive composites." Carbon 47, no. 1 (2009): 2-22. https://doi.org/10.1016/j.carbon.2008.09.039.

S.P. Pradhan, L. Shubhadarshinee, P. Mohapatra, P. Mohanty, B.R. Jali, P. Mohapatra, A.K. Barick. "Conducting polymer composites for antistatic application in aerospace." Aerospace Polymeric Materials 7 (2022): 155-187. https://doi.org/10.1002/978119905264.ch7.

R. Yadav, M. Tirumali, X. Wang, M. Naebe, B. Kandasubramanian. "Polymer composite for antistatic application in aerospace." Defence Technology 16, no. 1 (2020): 107-118. https://doi.org/10.1016/j.dt.2019.04.008.

K. Tian, D. Hu, Q. Wei, Q. Fu, H. Deng. "Recent progress on multifunctional electromagnetic interference shielding polymer composites." Journal of Materials Science & Technology 134 (2023): 106-131. https://doi.org/10.1016/j.jmst.2022.06.031.

Y. Gao, C. Xie, Z. Zheng. "Textile composite electrodes for flexible batteries and supercapacitors: opportunities and challenges." Advanced Energy Materials 11, no. 3 (2021): 2002838. https://doi.org/10.1002/aenm.202002838.

O.S. Saran, A.P. Reddy, L. Chaturya, M. Pavan Kumar. "3D printing of composite materials: A short review." Materials Today: Proceedings 64 (2022): 615-619. https://doi.org/10.1016/j.matpr.2022.05.144.

M. Ateeq, M. Shafique, A. Azam, M. Rafiq. "A review of 3D printing of the recycled carbon fiber reinforced polymer composites: Processing, potential, and perspectives." Journal of Materials Research and Technology 26 (2023): 2291-2309. https://doi.org/10.1016/j.jmrt.2023.07.171.

P. Jagadeesh, M. Puttegowda, S.M. Rangappa, A. Karfidov, S. Gorbatyuk, A. Khan, M. Doddamani, S. Siengchin. "A comprehensive review on 3D printing advancements in polymer composites: technologies, materials, and applications." The International Journal of Advanced Manufacturing Technology 121, no. 1-2 (2022): 127-169. https://doi.org/10.1007/s00170-022-09460-7.

S.Y. Kim, Y.J. Noh, J. Yu. "Prediction and experimental validation of electrical percolation by applying a modified micromechanics model considering multiple heterogeneous inclusions." Composites Science and Technology 106 (2015): 156-162. https://doi.org/10.1016/j.compscitech.2014.11.015.

A. Manta, M. Gresil, C. Soutis. "Multi-scale finite element analysis of graphene/polymer nanocomposites: Electrical performance." European Congress on Computational Methods in Applied Sciences and Engineering. National Technical University of Athens, 1984-2022.

D. Budač, V. Milos, M. Carda, M. Paida, J. Fuhrmann, K. Bouzek. "Prediction of Electrical Conductivity of Porous Composites Using a Simplified Monte Carlo 3D Equivalent Electronic Circuit Network Model: LSM-YSZ Case Study." Electrochimica Acta 457 (2023): 142512. https://doi.org/10.1016/j.electacta.2023.142512.

R. Araújo, M.C. Paiva, M.F. Proenca, C.J.R. Silva. "Functionalization of carbon nanofibres by 1,3-dipolar cycloaddition reactions and its effect on composite properties." Composites Science and Technology 67, no. 5 (2007): 806-810. https://doi.org/10.1016/j.compscitech.2006.01.040.

R. Yadav, M. Tirumali, X. Wang, M.N. B. Kandasubramanian. "Polymer composite for antistatic application in aerospace." Defence Technology 16, no. 1 (2020): 107-118. https://doi.org/10.1016/j.dt.2019.04.008.

S. Rana, R. Fangueiro. "Advanced composites in aerospace engineering, in Advanced composite materials for aerospace engineering. Advanced Composite Materials for Aerospace Engineering. Processing, Properties and Applications." p. 1-15. https://doi.org/10.1016/B978-0-08-100037-3.00001-8.

Z.-H. Tang, D.-Y. Wang, Y.-Q. Li, P. Huang, S.-Y. Fu. "Modeling the synergistic electrical percolation effect of carbon nanotube/graphene/polymer composites." Composites Science and Technology 225 (2022): 109496. https://doi.org/10.1016/j.compscitech.2022.109496.

F. Nilsson, J. Kruckel, D.W. Schubert, F. Chen, M. Unge, U.W. Gedde, M.S. Hedenqvist. "Simulating the effective electric conductivity of polymer composites with high aspect ratio fillers." Composites Science and Technology 132 (2016): 16-23. https://doi.org/10.1016/j.compscitech.2016.06.008.

E.S. Tsobkallo, O.A. Moskalyuk, V.E. Yudin, A.N. Aleshin. "Influence of particle aspect ratio and ability to aggregate on electrical conductivity of fiber-forming polymer composites." Physics of Complex Systems 1, no. 3 (2020): 99-107. https://doi.org/10.33910/2687-153X-2020-1-3-99-107.

N. Zhao, Y. Kim, J.H. Koo. "3D Monte Carlo simulation modeling for the electrical conductivity of carbon nanotube-incorporated polymer nanocomposite using resistance network formation." Materials Science: Advanced Composite Materials 2, no. 2 (2018). https://doi.org/10.18063/msacm.v2i2.672.

D.-K. Lee, J. Yoo, H. Kim, B.-H. Kang, S.-H. Park. "Electrical and Thermal Properties of Carbon Nanotube Polymer Composites with Various Aspect Ratios." Materials 15, no. 4 (2022): 1356. https://doi.org/10.3390/ma15041356.

L. Abell, P. Adams, A. Monkman. "Electrical conductivity enhancement of predoped polyaniline by stretch orientation." Polymer 37, no. 26 (1996): 5927-5931. https://doi.org/10.1016/S0032-3861(96)00580-0.

C. Feng, L. Jiang. "Micromechanics modeling of bi-axial stretching effects on the electrical conductivity of CNT-polymer composites." International Journal of Applied Mechanics 7, no. 01 (2015): 1550005. https://doi.org/10.1142/S1758825115400050.

N.C. Das, T.K. Chaki, D. Khastgir. "Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites." Polymer International 51, no. 2 (2002): 156-163. https://doi.org/10.1002/pi.811.

C. Feng, L.Y. Jiang. "Investigation of uniaxial stretching effects on the electrical conductivity of CNT–polymer nanocomposites." Journal of Physics D: Applied Physics 47, no. 40 (2014): 405103. https://doi.org/10.1088/0022-3727/47/40/405103.

B. Zhang, Z.-G. Zhang, L. Wei. "Mechanical properties, electrical conductivity and microstructure of CuCrZr alloys treated with thermal stretch process." Transactions of Nonferrous Metals Society of China 25, no. 7 (2015): 2285-2292. https://doi.org/10.1016/S1003-6326(15)63843-2.

R.R. de Sousa Jr, D.A. Heinze, J.B. Sacramento, A.J.C. Lanfredi, D.J. Carastan. "Electrical Conductivity and In Situ SAXS Probing of Block Copolymer Nanocomposites Under Mechanical Stretching." ACS Applied Materials & Interfaces 15, no. 22 (2023): 27156-27165. https://doi.org/10.1021/acsami.3c03573.

J. Aneli, G.E. Zaikov, L.M. Khananashvili. "Effects of mechanical deformations on the structurization and electric conductivity of electric conducting polymer composites." Journal of Applied Polymer Science 74, no. 3 (1999): 601-621. https://doi.org/10.1002/(SICI)1097-4628(19991017)74:3<601::AID-APP14>3.0.CO;2-K.

T. Prasse, J.-Y. Cavaille, W. Bauhofer. "Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment." Composites Science and Technology 63, no. 13 (2003): 1835-1841. https://doi.org/10.1016/S0266-3538(03)00019-8.

E.S. Tsobkallo, O.A. Moskalyuk, V.E. Yudin, A.N. Aleshin. "The influence of orientation drawing on the physical and mechanical properties of polypropylene film filaments filled with carbon black nanoparticles." Izvestiya Vuzov. Technologiya Legkoy Promishlennosti 10, no. 4 (2010): 25-29.

E. Tsobkallo, O. Moskalyuk, A. Stepashkina, V. Yudin. "Functional composite polymer materials for electrical purpose." AIP Conference Proceedings 2308 (2020): 030002. https://doi.org/10.1063/5.0033667.

Downloads

Published

18-07-2024

Issue

Section

Scientific paper