Investigation of FPM as a Corrosion Inhibitor for Mild Steel in HCl Solution: Insights from Electrochemical, Weight loss and Theoretical Approaches

Authors

DOI:

https://doi.org/10.62638/ZasMat1047

Abstract

In this study, we investigate the efficiency of furan-2-yl-piperazin-1-yl-methanone (FPM) as a corrosion inhibitor for mild steel in HCl environment. Our study combines electrochemical techniques, weight loss measurements and Density Functional Theory (DFT) calculations. Regarding weight loss experiments, we find that a concentration of 0.5 mM of FPM provides maximum protection efficacy, reaching 91.8% at 303 K after 30 minutes of immersion and observed that the inhibition efficiency rises with increasing concentration of FPM but declines with higher temperatures. Based on the Langmuir isotherm and experimental analysis, it can be suggested that FPM can adhere to the surface of mild steel through physical and chemical interactions. Moreover, our theoretical studies reveals correlations between the structure of FPM and its effectiveness in inhibiting corrosion, shedding light on the underlying mechanisms. Experimental and theoretical results both are in agreement. Our findings underscore the potential of FPM as a corrosion inhibitor in industrial applications, offering new avenues for corrosion control techniques.

References

N.S. Abtan, M.A.I. Al-Hamid, L.A. Kadhim, F.A. Sayyid, F.T.M. Noori, A. Kadum, A. Alamiery, W.K. Al-Azzawi (2024) Unlocking the Power of 4-Acetamidoantipyrine: A Promising Corrosion Inhibitor for Preserving Mild Steel in Harsh Hydrochloric Acid Environments. Prog. Color Colorants Coat., 17(1), 85-96, https://doi.org/10.30509/pccc.2023.167147.1223.

A.N. Jasim, A. Mohammed, A.M. Mustafa, F.F. Sayyid, H.S. Aljibori, W.K. Al-Azzawi, A.A. Al-Amiery, E.A. Yousif (2024) Corrosion Inhibition of Mild Steel in HCl Solution by 2-acetylpyrazine: Weight Loss and DFT Studies on Immersion Time and Temperature Effects. Prog. Color Colorants Coat., 17(4), 333-350, https://doi.org/10.30509/pccc.2024.167231.1261.

A.F. Hamood, H.S. Aljibori, M.A.I. Al-Hamid, A.A. Alamiery, W.K. Al-Azzawi (2024) MOP as a Corrosion Inhibitor for Mild Steel in HCl Solution: A Comprehensive Study. Prog. Color Colorants Coat., 17(3), 207-226, https://doi.org/10.30509/pccc.2023.167176.1237.

M.M. Taha, S.A. Nawi, A.M. Mustafa, F.F. Sayyid, M.M. Hanoon, A.A. Al-Amiery, A.A.H. Kadhum, W.K. Al-Azzawi (2024) Revolutionizing Corrosion Defense: Unlocking the Power of Expired BCAA. Prog. Color Colorants Coat., 17(2), 97-111, https://doi.org/10.30509/pccc.2023.167156.1228.

A.M. Resen, A.N. Jasim, H.S. Qasim, M.M. Hanoon, A.A. Al-Amiery, W.K. Al-Azzawi, A.M. Mustafa, F.F. Sayyid (2024) Investigating the Corrosion Inhibition Performance of Methyl 3H-2,3,5-triazole-1-formate for Mild Steel in Hydrochloric Acid Solution: Experimental and Theoretical Insights. Prog. Color Colorants Coat., 17(2), 185-205, https://doi.org/10.30509/pccc.2023.167189.1245.

M.K. Abbass, K.M. Raheef, I.A. Aziz, M.M. Hanoon, A.M. Mustafa, W.K. Al-Azzawi, A.A. Al-Amiery, A.A.H. Kadhum (2024) Evaluation of 2-Dimethyla-minopropionamidoantipyrine as a Corrosion Inhibitor for Mild Steel in HCl Solution: A Combined Experimental and Theoretical Study. Prog. Color Colorants Coat., 17(1), 1-10, https://doi.org/10.30509/pccc.2023.167081.1197.

H.S. Aljibori, O.H. Abdulzahra, A.J. Al-Adily, W.K. Al-Azzawi, A. Al-Amiery, A.A.H. Kadhum (2023) Corrosion inhibition effects of concentration of 2-oxo-3-hydrazonoindoline in acidic solution, expo¬sure period, and temperature. Int. J. Corr. Scale Inhib., 12(2), 438-457, https://doi.org/10.17675/2305-6894-2023-12-2-4

S. Junaedi, A.A.H. Kadhum, A. Al-Amiery, A.B. Mohamad, M.S. Takriff (2012) Synthesis and characterization of novel corrosion inhibitor derived from oleic acid: 2-Amino-5-Oleyl 1,3,4-Thiadiazol (AOT). Int. J. Electrochem. Sci., 7(4), 3543-3554, https://doi.org/10.1016/S1452-3981(23)13976-9.

H.S. Aljibori, A.H. Alwazir, S. Abdulhadi, W.K. Al-Azzawi, A.A.H. Kadhum, L.M. Shaker, A.A. Al-Amiery, H.Sh. Majdi (2022) The use of a Schiff base derivative to inhibit mild steel corrosion in 1 M HCl solution: a comparison of practical and theoretical findings. Int. J. Corr. Scale Inhib., 11(2), 1435-1455, https://doi.org/10.17675/2305-6894-2022-11-4-2.

W.K. Al-Azzawi, S.M. Salih, A. Hamood, R.K. Al-Azzawi, M.H. Kzar, H.N. Jawoosh, L.M. Shakier, A. Al-Amiery, A.A.H. Kadhum, W.N.R.W. Isahak, M.S. Takriff (2022) Adsorption and theoretical investigations of a Schiff base for corrosion inhibition of mild steel in an acidic environment. Int. J. Corr. Scale Inhib., 11(2), 1063-1082.

D.M. Jamil, A. Al-Okbi, M. Hanon, K.S. Rida, A. Alkaim, A. Al-Amiery, A. Kadhum, A.A.H. Kadhum (2018) Carbethoxythiazole corrosion inhibitor: as an experimentally model and DFT theory. J. Eng. Appl. Sci., 13(11), 3952-3959.

A. Alobaidy, A. Kadhum, S. Al-Baghdadi, A. Al-Amiery, A. Kadhum, E. Yousif, A.B. Mohamad (2015) Eco-friendly corrosion inhibitor: experimental studies on the corrosion inhibition performance of creatinine for mild steel in HCl complemented with quantum chemical calculations. Int. J. Electrochem. Sci., 10(3), 3961-3972, https://doi.org/10.1016/S1452-3981(23)06594-X.

A.A. Alamiery (2022) Study of corrosion behavior of N'-(2-(2-oxomethylpyrrol-1-yl)ethyl)piperidine for mild steel in the acid environment. Biointerface Res. Appl. Chem., 12(3), 3638-3646, https://doi.org/10.33263/BRIAC123.36383646.

A. Alamiery, A.B. Mohamad, A.A.H. Kadhum, M.S. Takriff (2022) Comparative data on corrosion protection of mild steel in HCl using two new thiazoles. Data Brief, 40, https://doi.org/10.1016/j.dib.2022.107838.

A.M. Mustafa, F.F. Sayyid, N. Betti, L.M. Shaker, M.M. Hanoon, A.A. Alamiery, A.A.H. Kadhum, M.S. Takriff (2022) Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl)phenyl)-1,3,4-triazole. S. Afr. J. Chem. Eng., 39(4), 42-51, https://doi.org/10.1016/j.sajce.2021.11.009.

A.A. Alamiery (2022) Investigations on corrosion inhibitory effect of newly quinoline derivative on mild steel in HCl solution complemented with antibacterial studies. Biointerface Res. Appl. Chem., 12(4), 1561-1568, https://doi.org/10.33263/BRIAC122.15611568.

I.A.A. Aziz, I.A. Annon, M.H. Abdulkareem, M.M. Hanoon, M.H. Alkaabi, L.M. Shaker, A.A. Alamiery, W.N.R.W. Isahak, M.S. Takriff (2021) Insights into corrosion inhibition behavior of a 5-mercapto-1,2,4-triazole derivative for mild steel in hydrochloric acid solution: experimental and DFT studies. Lubricants, 9(12), 122, https://doi.org/10.3390/lubricants9120122.

A. Alamiery (2021) Short report of mild steel corrosion in 0.5 M H2SO4 by 4-ethyl-1-(4-oxo-4-phenylbutanoyl) thiosemicarbazide. J. Tribologi, 30, 90-99.

A.A. Alamiery, W.N.R.W. Isahak, M.S. Takriff (2021) Inhibition of mild steel corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide: gravimetrical, adsorption and theoretical studies. Lubricants, 9(9), 93, https://doi.org/10.3390/lubricants9090093.

M.A. Dawood, Z.M.K. Alasady, M.S. Abdulazeez, D.S. Ahmed, G.M. Sulaiman, A.A.H. Kadhum, L.M. Shaker, A.A. Alamiery (2021) The corrosion inhibition effect of a pyridine derivative for low carbon steel in 1 M HCl medium: complemented with antibacterial studies. Int. J. Corr. Scale Inhib., 10(5), 1766-1782, https://doi.org/10.17675/2305-6894-2021-10-4-25.

A. Alamiery (2021) Corrosion inhibition effect of 2-N-phenylamino-5-(3-phenyl-3-oxo-1-propyl)-1,3,4-oxadiazole on mild steel in 1 M hydrochloric acid medium: insight from gravimetric and DFT investigations. Mater. Sci. Energy Technol., 4, 398-406, https://doi.org/10.1016/j.mset.2021.09.002.

A.A. Alamiery (2021) Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M hydrochloric acid and 0.5 M sulfuric acid: gravimetrical and theoretical studies. Mater. Sci. Energy Technol., 4, 263-273, https://doi.org/10.1016/j.mset.2021.07.004.

A.A. Alamiery, W.N.R.W. Isahak, H.S.S. Aljibori, H.A. Al-Asadi, A.A.H. Kadhum (2021) Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-yln-(2,5-dimethyl-pyrrol-1-yl)benzoylamine in 1.0 M HCl solution. Int. J. Corr. Scale Inhib., 10(6), 700-713, https://doi.org/10.17675/2305-6894-2021-10-2-14.

A. Alamiery, E. Mahmoudi, T. Allami (2021) Corrosion inhibition of low-carbon steel in hydrochloric acid environment using a Schiff base derived from pyrrole: gravimetric and computational studies. Int. J. Corr. Scale Inhib., 10(4), 749-765. https://doi.org/10.17675/2305-6894-2021-10-2-17.

A.J.M. Eltmimi, A. Alamiery, A.J. Allami, R.M. Yusop, A. Kadhum, T. Allami (2021) Inhibitive effects of a novel efficient Schiff base on mild steel in hydrochloric acid environment. Int. J. Corr. Scale Inhib., 10(3), 634-648, https://doi.org/10.17675/2305-6894-2021-10-2-10.

A.L. Alamiery, L.M. Shaker, T. Allami, A.H. Kadhum, M.S. Takriff (2021) A study of acidic corrosion behavior of furan-derived Schiff base for mild steel in hydrochloric acid environment: Experimental, and surface investigation. Materials Today: Proceedings, 44(6), 2337-2341, https://doi.org/10.1016/j.matpr.2020.12.431.

B.S. Mahdi, H.S.S. Aljibori, M. Abbass, W.K. Al-Azzawi, A.H. Kadhum, M.M. Hanoon, W.N.R.W. Isahak, A.A. Al-Amiery, H.Sh. Majdi (2022) Gravimetric analysis and quantum chemical assessment of 4-aminoantipyrine derivatives as corrosion inhibitors. International Journal of Corrosion and Scale Inhibition, 11(9), 1191-1213, https://doi.org/10.17675/2305-6894-2022-11-3-17.

S. Junaedi, A.A. Al-Amiery, A. Kadihum, A.A.H. Kadhum, A.B. Mohamad (2013) Inhibition effects of a synthesized novel 4-aminoantipyrine derivative on the corrosion of mild steel in hydrochloric acid solution together with quantum chemical studies. International Journal of Molecular Sciences, 14(6), 11915-11928, https://doi.org/10.3390/ijms140611915, https://doi.org/10.3390/ijms140611915.

S.B. Al-Baghdadi, A.A. Al-Amiery, T.S. Gaaz, A.A.H. Kadhum (2021) Terephthalohydrazide and isophthalohydrazide as new corrosion inhibitors for mild steel in hydrochloric acid: Experimental and theoretical approaches. Koroze a ochrana materiálů, 65(8), 12-22, https://doi.org/10.2478/kom-2021-0002.

S. Al-Baghdadi, T.S. Gaaz, A. Al-Adili, A.A. Al-Amiery, M.S. Takriff (2021) Experimental studies on corrosion inhibition performance of acetylthiophene thiosemicarbazone for mild steel in HCl complemented with DFT investigation. International Journal of Low-Carbon Technologies, 16(6), 181-188, https://doi.org/10.1093/ijlct/ctaa050, https://doi.org/10.1093/ijlct/ctaa050.

M.S. Abdulazeez, Z.S. Abdullahe, M.A. Dawood, Z.K. Handel, R.I. Mahmood, O. Osamah, A.H. Kadhum, L.M. Shaker, A.A. Al-Amiery (2021) Corrosion inhibition of low carbon steel in HCl medium using a thiadiazole derivative: weight loss, DFT studies and antibacterial studies. Int J Corr Scale Inhib, 10(6), 1812-1828, https://doi.org/10.17675/2305-6894-2021-10-4-27.

A.M. Mustafa, F.F. Sayyid, N. Betti, M.M. Hanoon, A. Al-Amiery, A.A.H. Kadhum, M.S. Takriff (2021) Inhibition evaluation of 5-(4-(1H-pyrrol-1-yl)phenyl)-2-mercapto-1,3,4-oxadiazole for the corrosion of mild steel in an acid environment: thermodynamic and DFT aspects. Tribologia, 38(4), 39-47. https://doi.org/10.30678/FJT.105330, https://doi.org/10.30678/fjt.105330.

ASTM International, Standard Practice for Prepar¬ing, Cleaning, and Evaluating Corrosion Test, 2011, 1-9.

NACE International, Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solutions at Temperatures below 93°C (200°F), TM0193-2016-SG, 2000.

M.M. Hanoon, A.M. Resen, L.M. Shaker, A.A.H. Kadhum, A.A. Al-Amiery (2021) Corrosion investigation of mild steel in aqueous hydrochloric acid environment using N-(naphthalen-1yl)-1-(4-pyridinyl)methanimine complemented with antibacterial studies. Biointerface Res. Appl Chem, 11(6), 9735-9743, https://doi.org/10.33263/BRIAC112.97359743.

A.A. Al-Amiery, W.K. Al-Azzawi, W.N.R.W. Isahak (2022) Isatin Schiff base is an effective corrosion inhibitor for mild steel in hydrochloric acid solution: gravimetrical, electrochemical, and computational investigation. Sci Rep, 12(4), 17773, https://doi.org/10.1038/s41598-022-22611-4.

A. Al-Amiery, W.N.R.W. Isahak, W.K. Al-Azzawi (2023) Multimethod evaluation of a 2-(1,3,4-thiadiazole-2-yl)pyrrolidine corrosion inhibitor for mild steel in HCl: combining gravimetric, electrochemical, and DFT approaches. Sci Rep, 13(4), 9770, https://doi.org/10.1038/s41598-023-36252-8.

A.A. Al-Amiery (2021) Anti-corrosion performance of 2-isonicotinoyl-N-phenylhydrazinecarbothioamide for mild steel hydrochloric acid solution: Insights from experimental measurements and quantum chemical calculations. Surf Rev Lett, 28(3), 2050058, https://doi.org/10.1142/S0218625X20500584.

Y.M. Abdulsahib, A.J.M. Eltmimi, S.A. Alhabeeb, M.M. Hanoon, A.A. Al-Amiery, T. Allami, A.A.H. Kadhum (2021) Experimental and theoretical investigations on the inhibition efficiency of N-(2,4-dihydroxytolueneylidene)-4-methylpyridin-2-amine for the corrosion of mild steel in hydrochloric acid. Int J Corr Scale Inhib, 10(6), 885-899, https://doi.org/10.17675/2305-6894-2021-10-3-3.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, N. Petersson, H. Nakatsuji, H. Hada, M. Ehara, R. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, J.W. Ayala, P.Y. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, R.L. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (2004) Gaussian 03, Revision B. 05, Gaussian, Inc., Wallingford, CT.

T. Koopmans (1934) Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica, 1(4), 104-113 (In German), https://doi.org/10.1016/S0031-8914(34)90011-2.

A.A. Al-Amiery, F. Binti Kassim, A.A.H. Kadhum (2016) Synthesis and characterization of a novel eco-friendly corrosion inhibitor for mild steel in hydrochloric acid. Sci Rep, 6(3), 19890, https://doi.org/10.1038/srep19890.

A.K. Khudhair, A.M. Mustafa, M.M. Hanoon, A.A. Al-Amiery, L.M. Shaker, T. Gazz, A.B. Mohamad, A.H. Kadhum, M.S. Takriff (2022) Experimental and theoretical investigation on the corrosion inhibitor potential of N-MEH for mild steel in HCl. Prog Color Colorant Coat, 15(2), 111-122, https://doi.org/10.30509/pccc.2021.166815.1111.

D.S. Zinad, R.D. Salim, N. Betti, L.M. Shaker, A.A. Al-Amiery (2022) Comparative investigations of the corrosion inhibition efficiency of a 1-phenyl-2-(1-phenylethylidene)hydrazine and its analog against mild steel corrosion in hydrochloric acid solution. Prog Color Colorant Coat, 15(1), 53-63, https://doi.org/10.30509/pccc.2021.166786.1108.

R.D. Salim, N. Betti, M. Hanoon, A.A. Al-Amiery (2021) 2-(2,4-Dimethoxybenzylidene)-N-phenylhy-drazinecarbothioamide as an efficient corrosion inhibitor for mild steel in acidic environment. Prog Color Colorant Coat, 15(1), 45-52, https://doi.org/10.30509/pccc.2021.166775.1105.

A.A. Al-Amiery, L.M. Shaker, A.H. Kadhum, M.S. Takriff (2021) Exploration of furan derivative for application as corrosion inhibitor for mild steel in hydrochloric acid solution: Effect of immersion time and temperature on efficiency. Mater Today: Proc, 42(6), 2968-2973, https://doi.org/10.1016/j.matpr.2020.12.807.

A.M. Resen, M.M. Hanoon, W.K. Alani, A. Kadhim, A.A. Mohammed, T.S. Gaaz, A.A.H. Kadhum, A.A. Al-Amiery, M.S. Takriff (2021) Exploration of 8-piperazine-1-ylmethylumbelliferone for application as a corrosion inhibitor for mild steel in hydrochloric acid solution. Int J Corr Scale Inhib, 10(2), 368-387, https://doi.org/10.17675/2305-6894-2021-10-1-21.

M.M. Hanoon, A.M. Resen, A.A. Al-Amiery, A.A.H. Kadhum, M.S. Takriff (2022) Theoretical and experimental studies on the corrosion inhibition potentials of 2-((6-methyl-2-ketoquinolin-3-yl)methylene) hydrazinecarbothioamide for mild steel in 1 M HCl. Prog Color Colorant Coat, 15(1), 11-23. https://doi.org/10.30509/pccc.2020.166739.1095.

F.G. Hashim, T.A. Salman, S.B. Al-Baghdadi, T. Gaaz, A.A. AlAmiery (2020) Inhibition effect of hydrazine-derived coumarin on a mild steel surface in hydrochloric acid. Tribologia, 37(3), 45-53, https://doi.org/10.30678/FJT.95510, https://doi.org/10.30678/fjt.95510.

A.M. Resen, M. Hanoon, R.D. Salim, A.A. Al-Amiery, L.M. Shaker, A.A.H. Kadhum (2020) Gravi¬metrical, theoretical investigations, and surface morphological investigations of corrosion inhibition effect of 4-(benzoimidazole-2-yl)pyridine on mild steel in hydrochloric acid. Koroze Ochr Mater, 64(1), 122-130, https://doi.org/10.2478/kom-2020-0018, https://doi.org/10.2478/kom-2020-0018.

A.Z. Salman, Q.A. Jawad, K.S. Ridah, L.M. Shaker, A.A. AlAmiery (2020) Selected bisthiadiazole: synthesis and corrosion inhibition studies on mild steel in HCl environment. Surf Rev Lett, 27(3), 2050014, https://doi.org/10.1142/S0218625X20500146.

A.A. Alamiery, W.N.R.W. Isahak, H.S.S. Aljibori, H.A. Al-Asadi, A.A.H. Kadhum (2021) Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-yl-N-(2,5-dimethyl-pyrrol-1-yl)benzoylamine in 1.0 M HCl solution. Int J Corr Scale Inhib, 10(5), 700-713, https://doi.org/10.17675/2305-6894-2021-10-2-14.

S.B. Al-Baghdadi, F.G. Hashim, A.Q. Salam, T.K. Abed, T.S. Gaaz, A.A. Al-Amiery, A.A.H. Kadhum, K.S. Reda, W.K. Ahmed (2018) Synthesis and corrosion inhibition application of NATN on mild steel surface in acidic media complemented with DFT studies. Results Phys, 8(6), 1178-1184, https://doi.org/10.1016/j.rinp.2018.02.007.

W.K. Al-Azzawi, A.J. Al Adily, F.F. Sayyid, R.K. Al-Azzawi, M.H. Kzar, H.N. Jawoosh, A.A. Al-Amiery, A.A.H. Kadhum, W.N.R.W. Isahak, M.S. Takriff (2022) Evaluation of corrosion inhibition characteristics of an N-propionanilide derivative for mild steel in 1 M HCl: Gravimetrical and computational studies. Int J Corr Scale Inhib, 11(3), 1100-1114, https://doi.org/10.17675/2305-6894-2022-11-3-12.

A.K. Al-Edan, W.N.R.W. Isahak, Z.A.C. Ramli, W.K. Al-Azzawi, A.A.H. Kadhum, H.S. Jabbar, A. Al-Amiery (2023) Palmitic acid-based amide as a corrosion inhibitor for mild steel in 1M HCl. Heliyon, 9(4), e14657, https://doi.org/10.1016/j.heliyon.2023.e14657.

F.F. Sayyid, A.M. Mustafa, M.M. Hanoon, L.M. Saker, A.A. Alamiery (2022) Corrosion protection effectiveness and adsorption performance of schiff base-quinazoline on mild steel in HCl environment. Corros Sci Tech, 21(4), 77-88.

A.A. Al-Amiery, A.B. Mohamad, A.A.H. Kadhum (2022) Experimental and theoretical study on the corrosion inhibition of mild steel by nonanedioic acid derivative in hydrochloric acid solution. Sci Rep, 12(6), 4705, https://doi.org/10.1038/s41598-022-08146-8.

A.A. Al-Amiery, W.N. Isahak, W.K. Al-Azzawi (2024) Sustainable corrosion inhibitors: A key step towards environmentally responsible corrosion control. Ain Shams Engineering Journal, 102672, https://doi.org/10.1016/j.asej.2024.102672.

I. Obot, N. Obi-Egbedi, S. Umoren (2009) Adsorption characteristics and corrosion inhibitive properties of clotrimazole for aluminium corrosion in hydrochloric acid. Int. J. Electrochem. Sci, 4, 863-877, https://doi.org/10.1016/S1452-3981(23)15190-X.

M.H. Sliem, N.M. El Basiony, E.G. Zaki, M.A. Sharaf, A.M. Abdullah (2020) Corrosion Inhibition of Mild Steel in Sulfuric Acid by a Newly Synthesized Schiff Base: An Electrochemical, DFT, and Monte Carlo Simulation Study. Electroanalysis, 32, 3145-3158, DOI: 10.1002/elan.202060461, https://doi.org/10.1002/elan.202060461.

I. Obot, N. Obi-Egbedi, S. Umoren (2009) Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl. Corros. Sci, 51, 1868-1875, https://doi.org/10.1016/j.corsci.2009.05.017.

M. Quraishi, F. Ansari, D. Jamal (2003) Thiourea derivatives as corrosion inhibitors for mild steel in formic acid. Mater. Chem. Phys, 77, 687-690, https://doi.org/10.1016/S0254-0584(02)00130-X.

J. Fu, H. Zang, Y. Wang, S. Li, T. Chen, X. Liu (2012) Experimental and theoretical study on the inhibition performances of quinoxaline and its derivatives for the corrosion of mild steel in hydrochloric acid. Ind. Eng. Chem. Res, 51, 6377-6386, DOI: 10.1021/ie202832e, https://doi.org/10.1021/ie202832e.

S.K. Saha, P. Ghosh, A. Hens, N.C. Murmu, P. Banerjee (2015) Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica E, 66, 332-341, https://doi.org/10.1016/j.physe.2014.10.035.

A.S. Fouda, M.A. Ismail, A.M. Temraz, A.S. Abousalem (2019) Comprehensive investigations on the action of cationic terthiophene and bithiophene as corrosion inhibitors: experimental and theoretical studies. New J. Chem, 43, 768-789, https://doi.org/10.1039/C8NJ04330B

S.K. Saha, P. Banerjee (2018) Introduction of newly synthesized Schiff base molecules as efficient corrosion inhibitors for mild steel in 1 M HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Mater. Chem. Front, 2, 1674-1691, https://doi.org/10.1039/C8QM00162F.

I. Lukovits, E. Kalman, F. Zucchi (2001) Corrosion inhibitors-correlation between electronic structure and efficiency. Corrosion, 57(1), 3-8, https://doi.org/10.5006/1.3290328.

L. Guo, I.B. Obot, X. Zheng, X. Shen, Y. Qiang, S. Kaya, C. Kaya (2017) Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Appl. Surf. Sci, 406, 301-306, https://doi.org/10.1016/j.apsusc.2017.02.134

M. Masoud, M. Awad, M. Shaker, M. El-Tahawy (2010) The role of structural chemistry in the inhibitive performance of some aminopyrimidines on the corrosion of steel. Corros. Sci, 52, 2387-2396, https://doi.org/10.1016/j.corsci.2010.04.01.

B.D. Mert, A.O. Yüce, G. Kardaş, B. Yazıcı (2014) Inhibition effect of 2-amino-4-methylpyridine on mild steel corrosion: experimental and theoretical investigation. Corros. Sci, 85, 287-295, https://doi.org/10.1016/j.corsci.2014.04.032

N. Labjar, F. Bentiss, M. Lebrini, C. Jama, S. El hajjaji (2011) Study of Temperature Effect on the Corrosion Inhibition of C38 Carbon Steel Using Amino-tris(Methylenephosphonic) Acid in Hydrochloric Acid Solution. Int. J. Corros, 2011, 548528,

https://doi.org/10.1155/2011/548528.

A. Al-Sabagh, N. El Basiony, S. Sadeek, M. Migahed (2018) Scale and corrosion inhibition performance of the newly synthesized anionic surfactant in desalination plants: experimental, and theoretical investigations. Desalination, 437, 45-58,

https://doi.org/10.1016/j.desal.2018.01.036.

E.E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, I. Love (2010) Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium. Int. J. Quantum Chem, 110, 1003-1018,

https://doi.org/10.1002/qua.22249.

B.G. Bedir, M. Abd El-raouf, S. Abdel-Mawgoud, N.A. Negm, N.M. El Basiony (2021) Corrosion inhibition of carbon steel in hydrochloric acid solution using ethoxylated nonionic surfactants based on schiff base: electrochemical and computational investigations. ACS omega, 6(6), 4300-4312, https://doi.org/10.1021/acsomega.0c05476.

Downloads

Published

07-04-2025

Issue

Section

Articles