Superior electrochemical performance of SnSe-PPy nanocomposites for supercapacitor application
DOI:
https://doi.org/10.62638/ZasMat1002Keywords:
Tin selenide, polypyrrole, supercapacitor, specific capacity, cycle lifeAbstract
Recently, Metal chalcogenides have received considerable interest in the field of energy storage devices. In this work, tin selenide-polypyrrole (SnSe-PPy) nanocomposite has been synthesized by hydrothermal method and its supercapacitive behavior is investigated. The synthesized SnSe-PPy nanocomposite is analyzed by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and electrochemical characterization. XRD confirms the existence of orthorhombic SnSe, and the FTIR result reveals the presence of polypyrrole. The supercapacitive behavior of SnSe-PPy nanocomposite is studied by cyclic voltammetry and galvanostatic charge-discharge studies. SnSe-PPy nanocomposite delivers the specific capacitance of 223 F g-1 at 10 mV sec -1. The addition of polypyrrole increases the conductivity of the material and improves its supercapacitive behavior.
References
A. Dutta, S. Mitra, M. Basak, T. Banerjee (2023) A comprehensive review on batteries and supercapacitors: Development and challenges since their inception, Energy Storage., 5, e339.
https://doi.org/10.1002/est2.339
S. Badwal, S. Giddey, C. Munnings, A. Bhatt, A. Hollenkamp (2014) Emerging electrochemical energy conversion and storage technologies, Front. Chem., 2, 79, 1-28.
https://doi.org/10.3389/fchem.2014.00079
W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu (2017) Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects, Adv. Sci., 4, 1600539, 1-29.
https://doi.org/10.1002/advs.201600539
M. Winter, R.J. Brodd (2004) What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev., 104, 4245-4270.
https://doi.org/10.1021/cr020730k
V. Ragupathi, P. Panigrahi, G.S. Nagarajan (2023) Review-Supercapacitor Active Material from Recycling, ECS J. Solid State Sci. Technol.,12, 24001.
https://doi.org/10.1149/2162-8777/acb73a
M.E. Şahin, F. Blaabjerg, A. Sangwongwanich (2022) A Comprehensive Review on Supercapacitor Applications and Developments, Energies.,15, 674, https://doi.org/10.3390/en15030674
https://doi.org/10.3390/en15030674
S.M. Benoy, M. Pandey, D. Bhattacharjya, B.K. Saikia (2022) Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials, J. Energy Storage., 52,104938.
https://doi.org/10.1016/j.est.2022.104938
A.Townsend, C.Martinson, R.Gouws, D. Bessarabov (2021) Effect of supercapacitors on the operation of an air-cooled hydrogen fuel cell, Heliyon., 7, e06569.
https://doi.org/10.1016/j.heliyon.2021.e06569
Q. Xun, S. Lundberg, Y. Liu (2021) Design and experimental verification of a fuel cell/supercapacitor passive configuration for a light vehicle, J. Energy Storage., 33, 102110. https://doi.org/10.1016/j.est.2020.102110
https://doi.org/10.1016/j.est.2020.102110
M.A.Mohd Abdah, N.H.N.Azman, S. Kulandaivalu, Y. Sulaiman (2019) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors, Mater. Des., 186, 108199.
https://doi.org/10.1016/j.matdes.2019.108199
B.K. Saikia, S.M. Benoy, M. Bora, J. Tamuly, M. Pandey, D. Bhattacharya (2020) A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials, Fuel., 282, 118796.
https://doi.org/10.1016/j.fuel.2020.118796
S.Rajagopal, R.M.Ibrahim, D.Velev (2022) Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress, Condens. Matter., 7, 6, 1-33.
https://doi.org/10.3390/condmat7010006
Z.S. Iro, C. Subramani, S.S. Dash (2016) A Brief Review on Electrode Materials for Supercapacitor, Int. J. Electrochem Sci., 11,10628-10643, doi: 10.20964/2016.12.50
https://doi.org/10.20964/2016.12.50
M.Z. Ansari, S.A. Ansari, S.-H. Kim (2022) Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: A comprehensive review, J. Energy Storage., 53, 105187.
https://doi.org/10.1016/j.est.2022.105187
M. Vandana, S. Veeresh, H. Ganesh, Y.S. Nagaraju, H. Vijeth, M. Basappa, H. Devendrappa (2022) Graphene oxide decorated SnO2 quantum dots/polypyrrole ternary composites towards symmetric supercapacitor application, J. Energy Storage., 46, 103904.
https://doi.org/10.1016/j.est.2021.103904
W. Shi, M. Gao, J. Wei, J. Gao, C. Fan, E. Ashalley, H. Li, Z. Wang (2018) Tin Selenide (SnSe): Growth, Properties, and Applications, Adv. Sci., 5, 1700602.
https://doi.org/10.1002/advs.201700602
M.R. Burton, S. Mehraban, D. Beynon, J. McGettrick, T. Watson, N.P. Lavery, M.J. Carnie (2019) 3D Printed SnSe Thermoelectric Generators with High Figure of Merit, Adv. Energy Mater., 9, 1900201.
https://doi.org/10.1002/aenm.201900201
J. Kang, L. Wang, L. Zhang (2023) Discrete card-shaped bimetallic selenides as anode materials for sodium ion batteries with excellent long cycle stability, J. Solid State Chem., 323, 124014.
https://doi.org/10.1016/j.jssc.2023.124014
M. Kumar, S. Rani, Y. Singh, K. Gour, V.N. Singh (2021) Tin-selenide as a futuristic material: properties and applications, RSC Adv., 11, 6477.
https://doi.org/10.1039/D0RA09807H
C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y.-Q. Lan, J. Bao, J. Zhu (2014) Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors, ACS Nano., 8, 3761.
https://doi.org/10.1021/nn5004315
Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, G. Yu (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A., 2, 6086-6091.
https://doi.org/10.1039/C4TA00484A
S. Shrikrushna, J. Kulkarni (2015) Influence of Dodecylbenzene Sulfonic Acid Doping on Structural, Morphological, Electrical and Optical Properties on Polypyrrole/3C-SiC Nanocomposites, J. Nanomed. Nanotechnol., 6, 5, 1000313.
https://doi.org/10.4172/2157-7439.1000313
M.U. Shariq, A. Husain, M. Khan, A. Ahmad (2021) Synthesis and characterization of polypyrrole/ molybdenum oxide composite for ammonia vapour sensing at room temperature, Polym. Polym. Compos., 29, S989.
https://doi.org/10.1177/09673911211036589
B. Pandit, L.K. Bommineedi, B.R. Sankapal (2019) Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure, J. Energy Chem., 31, 79-88.
https://doi.org/10.1016/j.jechem.2018.05.011
C. Tian, Q. Lu, S. Zhao (2019) Monodispersed and hierarchical silica@manganese silicate core-shell spheres as potential electrodes for supercapacitor, J. Solid State Chem., 277, 475-483. https://doi.org/10.1016/j.jssc.2019.07.006
https://doi.org/10.1016/j.jssc.2019.07.006
B. Pandit, B. Sankapal, P. Koinkar (2019) Novel chemical route for CeO2/MWCNTs composite towards highly bendable solid-state supercapacitor device, Sci. Rep., 9, 5892-5905. doi: 10.1038/ s41598-019-42301-y
https://doi.org/10.1038/s41598-019-42301-y
B. Pandit, C.D. Jadhav, P.G. Chavan, H.S. Tarkas, J. V Sali, R.B. Gupta, B.R. Sankapal (2020), Two-Dimensional Hexagonal SnSe Nanosheets as Binder-Free Electrode Material for High-Performance Supercapacitors, IEEE Trans. Power Electron., 35, 11344-11351. doi: 10.1109/TPEL. 2020.2989097