Columbite-structured AB₂O₆ oxides: Understanding their structure, synthesis, and potential for future technologies

Authors

DOI:

https://doi.org/10.62638/ZasMat1452

Abstract

AB2O6 Oxides have recently attracted significant attention these days due to their exclusive properties. These compounds exhibit a variety of structural forms with diverse characteristics. Among them, columbite-type Oxides possess an orthorhombic structure, belong to Pbcn space group and exhibit    symmetry. The structure has of these material consists of AO6 and BO6 octahedra which are arranged in zig zag manner and have a powerful impact on the characteristics of these materials. These materials play a vital role in different applications such as microwave technology, catalysis, energy storage and electronic sensors. From a comprehensive literature survey, this review has covered the detailed study of the structure, physical properties, synthesis techniques, and the applications of these Oxides. Subsequently, we discuss the future potential of the Columbite Oxides, with an emphasis on strategies and computational modeling to enhance their properties and performance for the future technologies.

Keywords:

Columbite, microwave technology , computational modeling

References

References

Goldsmid, H. J. (2010). Introduction to thermoelectricity (Vol. 121). Springer. https://doi.org/10.1007/978-3-642-00716-3

Nolas, G. S., Sharp, J., & Goldsmid, H. J. (2013). Thermoelectrics: Basic principles and new materials developments (Vol. 45). Springer Science & Business Media. https://doi.org/10.1007/978-3-662-10394-9

Tetsi, E. (2017). AB₂O₆ oxides: potential thermoelectric and magnetic materials. The University of Liverpool.

Sen, P., Siles, J. V., Thawdar, N., et al. (2023). Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications. Nature Electronics, 6, 164–175. https://doi.org/10.1038/s41928-022-00897-6

Jia, R. D., Kumar, S., Tan, T. C., et al. (2023). Valley-conserved topological integrated antenna for 100-Gbps THz 6G wireless. Science Advances, 9, eadi8500. https://doi.org/10.1126/sciadv.adi8500

Bi, K., Yang, D. Q., Chen, J., et al. (2019). Experimental demonstration of ultralarge-scale terahertz all-dielectric metamaterials. Photonics Research, 7, 457–463. https://doi.org/10.1364/PRJ.7.000457

Yang, Q. L., Kruk, S., Xu, Y. H., et al. (2020). Mie-resonant membrane Huygens’ metasurfaces. Advanced Functional Materials, 30, 1906851. https://doi.org/10.1002/adfm.201906851

Maleki, A., Singh, A., Jaber, A., et al. (2023). Metamaterial-based octave-wide terahertz bandpass filters. Photonics Research, 11, 526–532. https://doi.org/10.1364/PRJ.472109

Sırmacı, Y. D., Barreda Gomez, A., Pertsch, T., et al. (2023). All-dielectric Huygens’ meta-waveguides for resonant integrated photonics. Laser & Photonics Reviews, 17, 2200860. https://doi.org/10.1002/lpor.202200860

Nagatsuma, T., Ducournau, G., & Renaud, C. C. (2016). Advances in terahertz communications accelerated by photonics. Nature Photonics, 10, 371–379. https://doi.org/10.1038/nphoton.2016.65

Xia, Q., & Jornet, J. M. (2019). Expedited neighbor discovery in directional terahertz communication networks enhanced by antenna side-lobe information. IEEE Transactions on Vehicular Technology, 68, 7804–7814. https://doi.org/10.1109/TVT.2019.2924820

Yan, J. H., Yang, X. Z., Liu, X. Y., et al. (2023). Van der Waals heterostructures with built-in Mie resonances for polarization-sensitive photodetection. Advanced Science, 10, 2207022. https://doi.org/10.1002/advs.202207022

Lu, Y. Q., Jiang, C. H., Bai, Y., et al. (2024). Enhancing the lithium storage properties of SiO@NC anode by MnNb₂O₆ decoration. Journal of Energy Storage, 89, 111699. https://doi.org/10.1016/j.est.2024.111699

Kinross, A. W., Fu, M., Munsie, T. J., et al. (2014). Evolution of quantum fluctuations near the quantum critical point of the transverse field Ising chain system CoNb₂O₆. Physical Review X, 4, 031008. https://doi.org/10.1103/PhysRevX.4.031008

Coldea, R., Tennant, D. A., Wheeler, E. M., et al. (2010). Quantum criticality in an Ising chain: Experimental evidence for emergent E8 symmetry. Science, 327, 177–180. https://doi.org/10.1126/science.1180085

Liu, F. M., Yang, X., Wang, B., et al. (2016). High performance mixed potential type acetone sensor based on stabilized zirconia and NiNb₂O₆ sensing electrode. Sensors and Actuators B: Chemical, 229, 200–208. https://doi.org/10.1016/j.snb.2016.01.128

Zhao, S., Chen, T., Li, H. P., et al. (2023). An advanced CoNb₂O₆ anode material with in situ interstitial doping for high-rate lithium-ion batteries. Chemical Engineering Journal, 472, 145115. https://doi.org/10.1016/j.cej.2023.145115

Pullar, R. C., Breeze, J. D., & Alford, N. M. (2005). Characterization and microwave dielectric properties of M₂+Nb₂O₆ ceramics. Journal of the American Ceramic Society, 88, 2466–2471. https://doi.org/10.1111/j.1551-2916.2005.00458.x

Yang, H. Y., Zhang, S. R., Yang, H. C., et al. (2019). Intrinsic dielectric properties of columbite ZnNb₂O₆ ceramics studied by P–V–L bond theory and infrared spectroscopy. Journal of the American Ceramic Society, 102, 5365–5374. https://doi.org/10.1111/jace.16385

Beck, H. P. (2012). A study on AB₂O₆ compounds, part II: The branches of the hcp family. Zeitschrift für Kristallographie-Crystalline Materials, 227(12), 843–858. https://doi.org/10.1524/zkri.2012.1504

Ekmekçi, M. K., İlhan, M., Güleryüz, L. F., & Mergen, A. (2017). Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb₂O₆:Dy³⁺ phosphor. Optik, 128, 26–33. https://doi.org/10.1016/j.ijleo.2017.05.006

İlhan, M., Ekmekçi, M. K., & Keskin, İ. Ç. (2021). Judd–Ofelt parameters and X-ray irradiation results of MNb₂O₆:Eu³⁺ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Advances, 11, 10451–10458. https://doi.org/10.1039/D1RA00247C

İlhan, M., & Ekmekçi, M. K. (2015). Synthesis and photoluminescence properties of Dy³⁺ doped white light emitting CdTa₂O₆ phosphors. Journal of Solid State Chemistry, 226, 243–249. https://doi.org/10.1016/j.jssc.2015.03.017

İlhan, M., & Keskin, İ. Ç. (2018). Photoluminescence, radioluminescence and thermoluminescence properties of Eu³⁺ doped cadmium tantalate phosphor. Dalton Transactions, 47, 13939–13948. https://doi.org/10.1039/C8DT01961F

Erdem, R., İlhan, M., Ekmekçi, M. K., & Erdem, Ö. (2017). Electrospinning, preparation and photoluminescence properties of CoNb₂O₆:Dy³⁺ incorporated polyamide 6 composite fibers. Applied Surface Science, 421, 240–246. https://doi.org/10.1016/j.apsusc.2017.02.106

Başak, A. S., Ekmekçi, M. K., Erdem, M., İlhan, M., & Mergen, A. (2016). Investigation of boron-doping effect on photoluminescence properties of CdNb₂O₆:Eu³⁺ phosphors. Journal of Fluorescence, 26, 719–724. https://doi.org/10.1007/s10895-016-1792-2

İlhan, M., & Keskin, İ. Ç. (2020). Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb₂O₆:Dy³⁺ phosphors synthesized via molten salt method. Physical Chemistry Chemical Physics, 22, 19769–19777. https://doi.org/10.1039/D0CP03468F

Karmakar, S., Garg, A. B., Sahu, M., Tripathi, A., Mukherjee, G. D., Thapa, R., & Behera, D. (2020). Investigating solid-state characteristics. Journal of Applied Physics, 128, 215902. https://doi.org/10.1063/5.0021675

Tarantino, S. C., & Zema, M. (2005). Mixing and ordering behavior in manganocolumbite-ferrocolumbite solid solution: A single-crystal X-ray diffraction study. American Mineralogist, 90(8-9), 1291–1300. https://doi.org/10.2138/am.2005.1641

Bordet, P., McHale, A., Santoro, A., & Roth, R. S. (1986). Powder neutron diffraction study of ZrTiO₄, Zr₅Ti₇O₂₄, and FeNb₂O₆. Journal of Solid State Chemistry, 64, 30–46. https://doi.org/10.1016/0022-4596(86)90119-2

İlhan, M. (2017). Synthesis, structural characterization, and photoluminescence properties of TTB-type PbTa₂O₆:Eu³⁺ phosphor. International Journal of Applied Ceramic Technology, 14, 1144–1150. https://doi.org/10.1111/ijac.12710

İlhan, M., Ekmekçi, M. K., Mergen, A., & Yaman, C. (2017). Photoluminescence characterization and heat treatment effect on luminescence behavior of BaTa₂O₆:Dy³⁺ phosphor. International Journal of Applied Ceramic Technology, 14, 1134–1143. https://doi.org/10.1111/ijac.12743

İlhan, M., Keskin, İ. Ç., & Gültekin, S. (2020). Assessing of photoluminescence and thermoluminescence properties of Dy³⁺ doped white light emitter TTB-lead metatantalate phosphor. Journal of Electronic Materials, 49, 2436–2449. https://doi.org/10.1007/s11664-020-07939-9

Vanderah, T. A., Roth, R. S., Siegrist, T., Febo, W., Loezos, J. M., & Wong-Ng, W. (2003). Subsolidus phase equilibria and crystal chemistry in the system BaO–TiO₂–Ta₂O₅. Solid State Sciences, 5(1), 149–164. https://doi.org/10.1016/S1293-2558(02)00089-4

İlhan, M. (2014). Synthesis, structure, and photoluminescence properties of Ho³⁺ doped TTB–BaTa₂O₆ phosphors. Solid State Sciences, 38, 160–168. https://doi.org/10.1016/j.solidstatesciences.2014.08.015

Nyman, M., Rodriguez, M. A., Rohwer, L. E., Martin, J. E., Waller, M., & Osterloh, F. E. (2009). Unique LaTaO₄ polymorph for multiple energy applications. Chemistry of Materials, 21(19), 4731–4737. https://doi.org/10.1021/cm9020645

Nyman, M., Rodriguez, M. A., Shea-Rohwer, L. E., Martin, J. E., & Provencio, P. P. (2009). Highly versatile rare earth tantalate pyrochlore nanophosphors. Journal of the American Chemical Society, 131(33), 11652–11653. https://doi.org/10.1021/ja903823w

Narkilahti, J., & Tyunina, M. (2012). The structure of strained perovskite KTaO₃ thin films prepared by pulsed laser deposition. Journal of Physics: Condensed Matter, 24(32), 325901. https://doi.org/10.1088/0953-8984/24/32/325901

Ganguli, A. K., Nangia, S., Thirumal, M., & Gai, P. L. (2006). A new form of MgTa₂O₆ obtained by the molten salt method. Journal of Chemical Sciences, 118, 37–42. https://doi.org/10.1007/BF02708763

Almeida, C. G., Andrade, H. M. C., Mascarenhas, A. J. S., & Silva, L. A. (2010). Synthesis of nanosized β-BiTaO₄ by the polymeric precursor method. Materials Letters, 64(9), 1088–1090. https://doi.org/10.1016/j.matlet.2010.02.020

Layden, G. K. (1967). Polymorphism of BaTa₂O₆. Materials Research Bulletin, 2(5), 533–539. https://doi.org/10.1016/0025-5408(67)90029-3

Mumme, W. G., Grey, I. E., Roth, R. S., & Vanderah, T. A. (2007). Contrasting oxide crystal chemistry of Nb and Ta: The structures of the hexagonal bronzes BaTa₂O₆ and Ba₀.₉₃Nb₂.₃O₆. Journal of Solid State Chemistry, 180(9), 2429–2436. https://doi.org/10.1016/j.jssc.2007.06.014

Navale, S. C., Samuel, V., Gaikwad, A. B., & Ravi, V. (2007). A co-precipitation technique to prepare BaTa₂O₆. Ceramics International, 33(2), 297–299. https://doi.org/10.1016/j.ceramint.2005.08.012

İlhan, M., Mergen, A., & Yaman, C. (2011). Mechanochemical synthesis and characterisation of BaTa₂O₆ ceramic powders. Ceramics International, 37(5), 1507–1514. https://doi.org/10.1016/j.ceramint.2011.01.006

İlhan, M., Mergen, A., & Yaman, C. (2013). Removal of iron from BaTa₂O₆ ceramic powder produced by high energy milling. Ceramics International, 39(5), 5741–5750. https://doi.org/10.1016/j.ceramint.2012.12.092

Peña, J. P., Bouvier, P., Hneda, M., Goujon, C., & Isnard, O. (2021). Raman spectra of vanadates MV₂O₆ (M = Mn, Co, Ni, Zn) crystallized in the non-usual columbite-type structure. Journal of Physics and Chemistry of Solids, 154, 110034. https://doi.org/10.1016/j.jpcs.2021.110034

Lima da Silva, W., Walker, M., Ribas, R. M., Monteiro, R. S., Kendrick, E., & Walton, R. I. Morphological control of CaxMn₁−xNb₂O₆ columbites for use as lithium hosts in batteries.

Kumar, P., Mishra, B., & Pastor, M. (2020). Preparation and synthesis of Columbite MNb₂O₆ ceramics by chemical reaction (Where M = Zn, Ni, Co). International Journal of Scientific Research and Engineering Development, 3(5), 521–525.

Sarkar, K., & Mukherjee, S. (2016). Characterization and evaluation of property of columbite–MgNb₂O₆ synthesized by chemical route. Journal of The Institution of Engineers (India): Series E.

Wu, S. Y., Liu, X. Q., & Chen, X. M. (2009). Low temperature synthesis of ZnNb₂O₆ fine powders by wet-chemical processes. Ferroelectrics, 388(1), 114–119. https://doi.org/10.1080/00150190902965869

You, C. Y., & Zhang, Y. C. (2016). Effects of CuO additives and sol–gel technique on NiNb₂O₆ dielectric ceramics for LTCC application. Journal of Materials Science: Materials in Electronics, 27, 6606–6613. https://doi.org/10.1007/s10854-016-4607-1

Fu, Z. F., Ma, J. L., Liu, P., & Tang, Y. X. (2013). Microwave dielectric properties of MgNb₂O₆ ceramics prepared via high energy ball milling method. Advanced Materials Research, 631, 499–503. https://doi.org/10.4028/www.scientific.net/AMR.631-632.499

Shi, L., Wang, X., Peng, R., Lu, Y., Liu, C., Zhang, D., & Zhang, H. (2022). Effect of Mn²⁺ doping on the lattice and the microwave dielectric properties of MgTa₂O₆ ceramics. Ceramics International, 48(14), 20096–20101. https://doi.org/10.1016/j.ceramint.2022.03.003

Tiwari, D. K., & Rout, S. K. (2020). Enhancement of electrical energy storage ability by controlling grain size of polycrystalline BaNb₂O₆ for high density capacitor application. Journal of Alloys and Compounds, 829, 154573. https://doi.org/10.1016/j.jallcom.2020.154573

Ahmed, A., Ghulam, M., Irfan, M., Ahmad, A., & Hind, A. (2024). Investigating the novel thermoelectric properties of magnesium, calcium, and barium divanadate oxides (XV₂O₆ where X = Mg, Ca, and Ba) for waste heat recovery applications in energy harvesting devices. Applied Physics A, 130(1), 1–13. https://doi.org/10.1007/s00339-024-05477-0

Ahmed, A., Murtaza, G., Ayyaz, A., Shafiq, M., & Albalawi, H. (2024). Synthesis, characterization, and novel thermoelectric properties of Nb-based metal oxides XNb₂O₆ (X = Mg, Ca, Ba) for energy harvesting applications: Experimental and DFT insight. Journal of Materials Research, 39(12), 1727–1740. https://doi.org/10.1557/jmr.2024.162

Spooner, K. B., Ganose, A. M., Leung, W. W. W., Buckeridge, J., Williamson, B. A. D., Palgrave, R. G., Scanlon, D. O., & Palgrave, R. G. (2021). BaBi₂O₆: A promising n-type thermoelectric oxide with the PbSb₂O₆ crystal structure. Chemistry of Materials, 33(18), 7441–7456. https://doi.org/10.1021/acs.chemmater.1c01719

Basavaraju, N., Prashantha, S. C., Surendra, B. S., Shekhar, T. R., Anil Kumar, M. R., Ravikumar, C. R., Raghavendra, N., Shashidhara, T. S., & Shashidhara, T. S. (2021). Structural and optical properties of MgNb₂O₆ nanoparticles: Its potential application in photocatalytic and pharmaceutical industries as a sensor. Environmental Nanotechnology, Monitoring & Management, 16, 100581. https://doi.org/10.1016/j.enmm.2021.100581

de Lima Nascimento, J. F., Nobre, F. X., Batista, F. M. C., Cabot, A., Vendrell, X., Mestres, L., Cunha Mendes, O. da, Ferreira, R. D., Ruiz, Y. L., Quaresma, J. N. Nonato, & Mendes, O. da Cunha. (2023). Synthesis of CaNb₂O₆ with a rynersonite-like structure: Morphology, Rietveld refinement, optical, and vibrational properties. Inorganic Chemistry, 62(40), 16323–16328. https://doi.org/10.1021/acs.inorgchem.3c01782

Rahman, M. A., Rahaman, M. Z., & Sarker, M. A. R. (2017). Ab-initio study of structural, elastic, electronic, optical, and thermodynamic properties of MgV₂O₆. arXiv Preprint, arXiv:1709.08208.

Tang, R. L., Li, Y., Tao, Q., Li, N. N., Li, H., Han, D. D., Wang, X., & Zhang, X. (2013). High-pressure Raman study of MgV₂O₆ synthesized at high pressure and high temperature. Chinese Physics B, 22(6), 066202. https://doi.org/10.1088/1674-1056/22/6/066202

Tui, R. L., Yan, L., Qiang, T., Na-Na, L., Hui, L., Dan-Dan, H., Pin-Wen, Z., & Xin, W. (2013). High-pressure Raman study of MgV₂O₆ synthesized at high pressure and high temperature. Chinese Physics B, 22(6), 066202. https://doi.org/10.1088/1674-1056/22/6/066202

Duman, U., Aycibin, M., & Özdemir, Ö. F. (2021). The electronic, structural, and optical properties of CaNb₂O₆ compound: Theoretical study. Physica Status Solidi (B), 258(12), 2100416. https://doi.org/10.1002/pssb.202100416

Rahman, M. A., Rahaman, M. Z., Ali, M. S., & Sarker, M. A. R. (2018). Theoretical investigation on MgV₂O₆: Ab-initio study. Philosophical Magazine, 98(22), 2077–2093. https://doi.org/10.1080/14786435.2018.1492469

Saxena, N., & Kumar, P. (2024). ABO₄ and AB₂O₆ structured metal oxide-based gas sensors. In Complex and Composite Metal Oxides for Gas, VOC and Humidity Sensors, Volume 2 (pp. 385–404). Elsevier.

Güleryüz, L. F. (2023). Effect of Nd³⁺ doping on structural, near-infrared, and cathodoluminescent properties for cadmium tantalate phosphors. Journal of the Turkish Chemical Society Section A: Chemistry, 10(1), 77–88. https://doi.org/10.18596/jtcs.116312

Şahin, E. İ. (2022). Microwave electromagnetic shielding effectiveness of ZnNb₂O₆-chopped strands composites for radar and wideband (6.5–18 GHz) applications. Lithuanian Journal of Physics, 62(3). https://doi.org/10.3952/lithjphys.6221

Güleryüz, L. F. (2022). Assessing of photoluminescence and structural properties of Dy³⁺ doped cadmium tantalate phosphor. Hacettepe Journal of Biology and Chemistry, 50(3), 247–254. https://doi.org/10.15671/hjbc.100833

Dang, H. X., Rettie, A. J., & Mullins, C. B. (2015). Visible-light-active NiV₂O₆ films for photoelectrochemical water oxidation. The Journal of Physical Chemistry C, 119(26), 14524–14531. https://doi.org/10.1021/acs.jpcc.5b03811

Mitra, R., Ramadoss, A., Anwar, S., & Manju, U. (2023). ZnTa₂O₆-holistic insights into a potential high-temperature piezoelectric candidate with tri-α-PbO₂ structure. Materials Research Bulletin, 157, 112038. https://doi.org/10.1016/j.materresbull.2022.112038

Bacirhonde, P., Dzade, N., Chalony, C., Park, J., Afranie, E., Lee, S., Kim, C. S., & Kim, C. S. (2021). Extraction of non-noble metal columbite-tantalite as a highly efficient electrocatalyst for water splitting. Nature Communications, 12(1), 1–10. https://doi.org/10.1038/s41467-021-26116-2

Liu, F., Wang, Y., Wang, B., Yang, X., Wang, Q., Liang, X., Sun, P., Chuai, X., Wang, Y., & Lu, G. (2017). Stabilized zirconia-based mixed potential type sensors utilizing MnNb₂O₆ sensing electrode for detection of low-concentration SO₂. Sensors and Actuators B: Chemical, 238, 1024–1031. https://doi.org/10.1016/j.snb.2016.07.136

Rahman, M. A., Rahaman, M. Z., Khatun, M. A., & Sarker, M. A. R. (2018). First principles investigation of structural, electronic and optical properties of NiV₂O₆. Computational Condensed Matter, 15, 95–99. https://doi.org/10.1016/j.cocom.2018.08.003

Basavaraju, N., Prashantha, S. C., Nagabhushana, H., Chandrasekhar, M., Kumar, A. N., Shekhar, T. S., & Anantharaju, K. S. (2021). A benign approach for novel synthesis of Eu³⁺ doped MgNb₂O₆: Its photoluminescence and photocatalytic studies. Ceramics International, 47(10), 14899–14906. https://doi.org/10.1016/j.ceramint.2021.02.042

Basavaraju, N., Prashantha, S. C., Nagabhushana, H., Pratapkumar, C., Ravikumar, C. R., Kumar, M. A., & Nagaswarupa, H. P. (2021). MgNb₂O₆: Dy³⁺ nanophosphor: A facile preparation, down conversion photoluminescence and UV-driven photocatalytic properties. Ceramics International, 47(7), 10370–10380. https://doi.org/10.1016/j.ceramint.2021.01.088

Khanehsari, N., Amjadi, M., Hallaj, T., & Shafiei-Irannejad, V. (2024). NiV₂O₆ nanoflowers as an oxidase-mimic nanozyme for sensitive fluorimetric assay of glutathione. Microchemical Journal, 199, 110160. https://doi.org/10.1016/j.microc.2024.110160

Low, W. H., Lim, S. S., Siong, C. W., Chia, C. H., & Khiew, P. S. (2021). One dimensional MnV₂O₆ nanobelts on graphene as outstanding electrode material for high energy density symmetric supercapacitor. Ceramics International, 47(7), 9560–9568. https://doi.org/10.1016/j.ceramint.2021.02.118

Downloads

Published

04-12-2025

Issue

Section

Review Paper