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Influence of the phonon subsystem onto the mechanical 
and thermodynamic properties of low-dimensional materials 

ABSTRACT 

This paper provides an overview of the influence of the phonon subsystem onto the mechanical 
and thermodynamic properties of low-dimensional materials (particularly, ultrathin films), which 
has been the subject of our team's research for many years. Explorations of that kind have 
become very important for the materials research science and engineering over the last few years, 
due to the great commercialization potential of the novel two-dimensional structures, such as 
graphene. It is shown how the quantum size effect influences the change of physical properties of 
the above-mentioned structures and the consequences of this impact have been discussed in 
detail. Theoretical analysis has been conducted by means of the method of two-time dependent 
Green’s functions by which the spectra of allowed phonon energies, as well as thermodynamic 
characteristics of these structures, has been determined. The diffusion processes have been 
treated by means of Kubo formula, adapted to the phonon subsystems in nanostructures. 

Keywords: Phonons, Green’s function, ultrathin films, specific heat, diffusion tensor. 

 

1. INTRODUCTION 

Researching mechanical and thermodynamic 
properties of nanostructures represents one of the 
greatest scientifical challenges in recent years. 
Thanks to the exceptional possibilities of applying 
low-dimensional systems in various fields of 
science, technology, and human life in general, the 
examination of these materials and structures have 
become one of the cornerstones of modern 
science. This particularly applies to the novel two-
dimensional crystalline structures such as 
graphene, being the most exciting and amazing 
material for potential application of today. But it is 
precisely on the example of graphene that has 
been shown to which extent ignorance of the basic 
physical properties of the nanostructures limits the 
possibilities of their utilization. It is now rightly 
understood that only with the thorough and serious 
theoretical and experimental examination of 
nanostructures, the full appreciation of their 
possibilities can be achieved. The central aim of 
this paper is to show how dimensional limitation of  
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phonons in low-dimensional structures (ultrathin 
films, in particular, but the same theoretical 
approach can without any reservations be applied 
to the other size-limited structures) influences its 
mechanical and thermodynamic properties, which 
creates the foundation for the idea of phonon 
engineering (nano-phononics) [1-5]. In accordance 
with a theoretically almost limitless range of 
applications of ultrathin films, graphene, in 
particular, it is necessary to fully understand the 
physical principles that make them so special. 

Why fonons? It is well-known fact that the 
phonon subsystem represents one of the most 
important always present systems in condensed 
matter that affects acoustic, thermal, as well as 
conductive and superconductive properties of 
materials. Phonon interactions with electrons, 
excitons, and other elementary excitations to a 
large extent determine and affect the state of the 
system under consideration. It has been shown 
that the spatial confinement of phonons, as a result 
of the quantum size effect, greatly changes the 
physical properties of the materials. The concept of 
phonon engineering is based exactly on these 
changes in order to improve mechanical, electric 
and thermodynamic properties of materials by 
changing the size of the sample, by inserting atoms 
of different kinds or by changing the quality of 
exterior surfaces. Given the enormous importance 
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that the heat removal has for the operation and 
reliability of electronic devices, it becomes clear 
how valuable is the ability to create the desired 
physical properties by changing some of these 
parameters. 

2. PHONONS IN A MACROSCOPIC SIZE 
CRYSTALS 

2.1. Phonon dispersion law 

By expanding the potential energy of crystals in 
a sum by small atomic displacements from the 

equilibrium position nu 


, one obtains the 

Hamiltonian of the phonon subsystem in a 
crystalline structure under consideration. Here, 

x x y y z zn n a n a n a    is the vector of the crystal 

lattice, where 
xa , 

ya  and 
za  are vectors of the 

crystal unit cell, and xn , yn , zn  are integers. Only 

crystals with a simple cubic crystalline structure 
containing one atom per elementary cell will be 
considered in this review. Although at first, this 
seems like a vast restriction in terms of applicability 
of chosen model structure, it turns out this is not 
the case: in fact, in accordance with the method of 
achievement statistical and dynamical equivalence 
between rectangular and structures with lower 
symmetry [4], this model has potential to be 
suitable in many cases. Hamiltonian of the phonon 
subsystem in such structures, displayed in the 
nearest neighbor approximation can be written in 
the following form [6-7]: 

   
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  
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     



  


  



(1) 

where M  is the mass of the atoms that constitute 

the crystalline lattice, 
;n

u


 are the small 

displacements of an atom in the node n  from its 

equilibrium position in direction  , and 
;n

p
 the 

phonon momentum. Hooke’s torsion constants are 
neglected in comparison to the tension constant. 

In order to derive the phonon dispersion law in 
crystalline structures, we start from phonon two-
time commutator Green’s function [8]: 

0
n,m ;n ;m ;n ;m

G (t t ') u (t ) u (t ') (t t ') u (t ), u (t ')
   

     
 

 (2) 

for which we formulate the equation of motion: 

   
2

n,m ;m2
0

n,m ;n

d (t t ')
M G (t t ') i t t ' p (t ), H(t ) ,u t ' .

idt






 

       
   

 (3) 

Performing Fourier transform t , the last equation converts into: 

2

n,m ;mn,m ;n

i 1
M G ( ) p , H ,u .

2 i







  


     
   

 (4) 

In the next step to determining Green's 
functions, we have to calculate a commutator that 
appears in higher-order Green's functions in Eq. 
(4). By performing spatial Fourier transform 

n,m k : 

   -i n m k

k
k

n,m

1
G ( ) e G

N

  


 
; 

 -i n m k

n,m

k

1
e

N



   

and after few simple algebraic steps, the last 
equation converts into: 

 
k

i 1 1
G

4 M (k ) (k ) (k )



  


     

 
  

   
 (5) 

where 
j j2

j

a k
(k ) 2 sin

2
    ,  j x,y,z  and 

C M   . From this equality, it can be seen 

that the poles of Green's functions are determined 
when the denominator of expression in brackets 
equalizes with zero. By solving this condition, 

taking (k )  , the phonon dispersion law in 

macroscopic size crystals is obtained in the form: 
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y y2 2 2x x z z

E (k ) (k )

a ka k a k
2E sin sin sin

2 2 2

 



 

  
 (6) 

where E C M    . In order to relate this 

equation with that for ultrathin film structures, it is 
useful to rewrite it in the form: 

   x y z

E (k )
(k ) 2 k k k

E






  E F G  (7) 

or, in a simpler manner: 

zxyxyz GFE  2  (8) 

where: 

  y y2 2x x
xy x y

a ka k
k k sin sin

2 2
  F F ; 

  2 z z
z z

a k
k sin

2
 G G  

Figure 1 shows the dependence of the square 

on the relative phonon energy 2

xyzE  in terms of the 

two-dimensional function xyF  with a parametric 

function 
zG  for the first Brillouin zone of the bulk 

structures. The dotted lines indicate the boundaries 
of the bulk zone. It can be seen that within the 
permissible energy zone, there is the same number 
of possible energy states, as the number of atoms 
within the crystal lattice. 

 

Figure 1. Phonon dispersion law for bulk structure 

Slika 1. Zakon disperzije fonona u balku 

All these energies are equally probable and 
their spatial distribution in the crystal is even. This 
is an understandable consequence of the absence 
of boundary conditions and imperfections of the 
structure. 

2.2. Phonon-induced thermodynamic properties 

We will assume that phonon wave vectors are 

arranged within the sphere of radius Dk  rather than 

in the first Brillouin zone ( Dk  is the Debye wave 

vector). Starting from this assumption, it can be 
written: 

 
3

D

3

x y z

4
ak

V 3

a k k k


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
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
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2
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  
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on the basis of which it follows: 

 
3 2

3 3 3

D x y z D

4 6
ak a k k k 8 k

3 a


       

 (9) 

and the Debye frequency is: 

3 2

D D

6
k v v

a


    

 (10) 

where v  is the speed of sound in the crystal. 
Through the Debye frequency, the corresponding 

Debye temperature DT  is also introducing: 

3 2

D D
B D D D

B B B

k v 6 v
k T T

k k k a

 
    

 (11) 

where Bk  is the Boltzmann constant. 

The internal energy of the system is calculated by standard definitional form [6-7]: 

 
 

 
D D

B

B

B B

3
2

k T4

B k T2 3 2 3 3
0 0

k T k T

V V
U d k T d

2 v 2 v
e 1 e 1


 



 

 


 

 
      

  
  

 

If, for the sake of simplicity, we assume that the phonon velocity does not depend on polarization, it 
follows: 
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D
3 x 3

B x

D 0

T x
U 9Nk T dx

T e 1

 
  

 
  (12) 

where N  is the number of atoms in the sample, 

B

x
k T


  and D

D

B

x
k T


 . Thermal capacitance is 

obtained by differentiating the previous equation by 
temperature: 

 

D

3
4 xx

B 2
x0D

T x e
C 9Nk T dx

T e 1

 
  

  
 (13) 

In the case of high temperatures, when 

DT T , the previous equation is reduced to the 

Dulong–Petit law. In the low-temperature region, 

when Dx  , equation (12) becomes: 

3
4

B

D

3 T
U Nk T

5 T

  
  

 
 

so that the expression for thermal capacitance in 
this case takes the form: 

3
4

B

D

12 T
C Nk

5 T

  
  

 
 

which is known as Debye 3T
 
- law. In order to 

establish a connection between the thermal 
capacitance of massive crystal structures with 
those of ultrathin films, we will divide the previous 

equation with N  to obtain the thermal capacitance 
calculated by one elementary cell of the crystal: 

3
4

* 3

B 0

D

1 U 12 T
C k C

N T 5 T

  
    

  
T  (14) 

where 
4

0 B

12
C k

5


  and 

D

T

T
T . 

3. A BUILDING OF THE PHONON MODEL IN 
ULTRATHIN FILMS 

Ultrathin films [5,9-11] are confined crystalline 
structures in which the boundary conditions differ 
from those in the interior, i.e. in which translational 
symmetry is disturbed along the direction 
perpendicular to the film. The model we have 
chosen for this analysis is the model of ideal (on 
boundary planes – nonperturbed) ultrathin film 

which is infinite in XY  planes and has a finite 
(nano-small) thickness in the z  direction. It 
means that symmetry disturbance appears on 
surfaces in z direction (Fig.2). 

 

Figure 2. The crystalline ultrathin film model-structure 

Slika 2. Model razmatranog ultratankog kristalnog filma 

The main consequence of symmetry 
disturbance is the spatial dependence of physical 
properties of the system. In the considered case, 
physical properties will depend on the index 

z zn 0,1, 2 ,..., N  ; z2 N 10  , labelling layers of 

the film in z direction. Spatial dependence is 
determined by boundary conditions. Here the 

simplest boundary conditions will be taken 
consisting in the absence of layers labelled with 

zn 1   and z zn N 1  . 

The analysis of the film-properties will be 
carried out with the help of Green's functions of 
displacement as well as momentum types and their 
spectral intensities will be used for determination of 
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some relevant kinetic and thermodynamic 
characteristics of the film. The method of Green's 
functions is generally used here because it is self-
consistent, i.e. it solves both the dynamic and 
thermodynamic aspects of the problem. Different 
methods are used for solving one or the other 
problem. For example, dynamic characteristics can 
be determined by using the wave function, but in 
order to solve thermodynamics, one has to resort 
to methods of statistical physics. 

The basic crystallographic parameters of the 

chosen model structure – in the nearest neighbor 

approximation – are: 

x y z x,ya a a a; N   ~ 8

z10 N ~10 , 

α, α, α
n ,n 1n,m n,m n,n λ n,n λ z z

C C C C C
 

 
    , 

 
z z z zN 1,N N ,N 1C C 1 C    , 

1,0 0, 1C C (1 )C    ; 

 , 1, 1,5      . 

where a  is the constant of the crystal lattice, x,y ,zN  

are the numbers of atoms along x , y  and z  

directions, C  is the straining Hooke’s elastic 

constant in direction  , and 

 x,y ,z x,y ,zn 0 ,1, 2 , ..., N . 

Having in mind all that has been said above, 

we can bring the following conclusions about the 

selected model structure: 

 the crystalline film has two infinite boundaries 

parallel to the XY  planes for z 0  and z L , 

while along z  direction it possesses finite 

thickness ( zL N a ). Along z direction there 

are zN 1  atoms; 

 torsion Hooke's elastic constants 
C  are 

negligible relative to the straining constants

C C  : 
α, α

n ,n 1 n 1n,m n,n λ n,n λ z z z
C C C C C

  
    . 

It is considered that there is an interaction 
between atoms in boundary layers of the film and 
external areas (substrate and e.g. air), disregarding 
that along z direction there are no atoms 
belonging to the film; however, boundary atoms are 
coupled through changed Hooke's forces with the 
atoms of the external environment [12-19]. In 
accordance with these conditions, elastic constants 
which describe the interaction between atoms of 
boundary surfaces and external environment are 
modified with appropriate coefficients   and  . 

With respect to described model and concerning 

the fact that layers with 
zn 1   and 

z zn N 1   

are missing, we have to reckon the following: 

x y;n ,n , ju 0  , z1 j j N 1     ,  zj 0,N , 

1C (1 )C   ; 
N 1z

C (1 ) C


  . If it were: 

1 N 1z
C C 0 

    1    , then the boundary 

atoms for 
zn 0  and 

z zn N  would be "frozen", 

that is, the effect of "rigid walls" would have 
appeared. On the other hand, in the case where it 

is 1 N 1z
C C C 

    0   , it is the effect of 

"free surfaces". In this paper we have opted for the 
latter case of flexible boundary surfaces, 
considering that this is closer to the real situation in 
which the ultrathin film can ”breathe”. 

Hamiltonian of the phonon subsystem for 
described ultrathin crystalline film – written in the 
nearest neighbor approximations and adapted to 
the ultrathin film model structure presented in Fig. 2 
– is: 

z

2
n;n

;n

N 1 2 2z

;n ,n n ;n ,n n;n 1,n n ;n 1,n nx y , z x y , zx y , z x y , z,n ,n n 1x y z
2 2

;n ,n n ;n ,n n;n ,n 1,n ;n ,n 1,nx y , z x y , zx y z x y z

;n ,n;n ,n ,n 1 x y ,x y z

Cp
H u u u u

2M 4

u u u u

u u






  



  





 
 



 
 




   
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   

   
     
   



  

2 2

n ;n ,n n;n ,n ,n 1z x y , zx y z
u u .




   
    

    

(15) 

Allowed phonon energies will be determined by 

following the same procedure described for the 

massive crystalline samples and by applying the 

partial spatial Fourier-transformation along z 

direction, where the translational symmetry has 

been interrupted. In this way, we get the system of 

 zN 1  nonhomogeneous algebraic-difference 

equations with the same number of undetermined 

Green’s functions [5-19]: 

z z z z z z z zn 1,m n ,m n 1,m n ,mk
G G G K         (16) 

where:  

 
z z z zn ,m n ,m x yG G k k ;   ; 

i
K

2 C
 ; 2 2

x yk k k   

while the determinant of that system of equations 
is: 
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N 1z

N 1z

1 0 0 0 0

1 1 0 0 0

0 1 0 0 0

D ( )

0 0 0 1 0

0 0 0 1 1

0 0 0 0 1

 











 







      
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 (17) 

where: 

y2 2x

2

k 2

akak
4 sin 4 sin 2

2 2






 


      

 (18) 

Spectra of the possible phonon energies is 

determined by finding of the zeroes of the 

determinant (17), i.e. by solving the equality: 

z

N 1z
D ( ; , ) 0 ( , );

1, 2, 3, N 1 .

      




  

 
 (19) 

This procedure gives the phonon dispersion law in an ultrathin, unperturbed crystalline film in the form: 

 y y z z2 2 2x x
a k a kE (k ) a k

(k ) 2 sin sin sin
E 2 2 2

 





   E  (20) 

or: xy2  E F G  

where z1, 2 , ...,N 1   . This equation is almost 

exactly the same as Eq. (6), with one significant 
difference: quasimomentum of phonons in ultrathin 
films can take only discrete values in z  direction, 

while it is continual in x   and y directions within 

the interval  0, a . Possible values for 
zk ( )  are 

obtained by solving the transcendental equation: 

 

   

   

3 2
z z z

z z
2

z z z

ak ( ) 2 ak ( ) 3 cosak ( )4cos cos
ctg (N 1)ak ( ) =

sinak ( ) 2 cosak ( ) 4 ak ( ) 1cos

      


     

    


       

 

which in the "free surfaces" case diminishes to: 

z

z

k ( )
a N 2

 
 


 

By analyzing the phonon dispersion law for 
ultrathin films (20), it can be seen that: 

min min

x y

min

z z

z

k k 0 ,
1

k k ( 1) 0 ,
a N 2




 

   


 

and: 

z
z z

z

max max
z y

max
z

k k ,
a

N 1
k k ( N 1) .

a N 2 a



 


 


    



 

There are also zN 1  discrete values between 

the minimum and maximum values for zk , which 

means that the phonons in the ultrathin film 
possess a lower energy gap: 

 
 

x ymin 1
min

z z
z

k k 0, k k 2 sin
2 N 2

 
 

 
       

  
E  

 (21) 

as well as - physically much less interesting - 
upper energy gap. This minimum energy 
corresponds to the minimum frequency of phonons 
in an ultrathin crystalline film: 

 
 

min

min x y z z

z

v
k k 0 , k k 2 sin 0

a 2 N 2




 
      

  

 
 (22) 

The central outcome of this fact is that the zone 

of allowed phonon energies in ultrathin films is 

narrower than that in bulk samples for the value of 

the sum of these gaps. Gaps are clearly seen in 

Figure 3, where the phonon dispersion law (20) is 

shown: interrupted lines denote unbounded 

structures – where the spectra is continual, and 

solid lines indicate ultrathin film with discrete 

spectra. 
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Figure 3. The phonon dispersion law for ultrathin 
film structure 

Slika 3. Zakon disperzije fonona u ultratankom 
filmu 

For the sake of a clearer comparison between 
the phonon dispersion laws in ultrathin films and 
unbounded crystalline structures, we will make use 
of the well known trigonometric relation: 

 2 1
sin 1 cos2

2
    

in order to rewrite Eq. (18) in the form: 

 x y

2

2
6 2 cosak cosak







     (23) 

If we introduce tags: 

2
2

2
6 






 E    and 

 x y xy2 cosak cosak  F  

Eq. (23) is reduced to: 2

xy  E F  

Figure 4 shows dependence  2 2

xy E E F  

with a parametric function G  for the five-layer 

perturbed film. Gaps and energy discreteness, as 

the most important consequences of the presence 
of spatial boundaries, are observable. It is 
important to note and to emphasize that the 
noticeable distinctions between bulk samples and 
film structures manifest themselves only for 
extremely thin nanofilm. If the number of levels 
exceeds ten, energy gaps and spectra 
discreteness disappear, which is in agreement with 
the known facts. This is exactly why in this paper 
we are insisting on the term "ultrathin films". 

 

Figure 4. Phonon dispersion law for the five-layer 
perturbed film 

Slika 4. Zakon disperzije fonona u petoslojnom 
perturbovanom filmu 

In order to determine the internal energy and 
thermal capacitance of the ultrathin film, we will 
apply the same methodology that was carried out 
during the thermodynamic analysis of massive 
specimens. To this end, we must first redefine 

Debye frequency  f

D  and the corresponding 

wave vector  f

Dk  for the case of the described 

model of the film: 

x / y x y

2
k , k k

a a a

  
 

 
      
 

, 

z z
z z

z z z

N 1 N1
k , k

N 2 a N 2 a N 2 a

  


 
      

   
, 

and therefore: 

 
 

3 3 2f
f z zD

3 3D D
3

z z
x y z

4
N N3ak

V k k3
a N 2 2 N 2a k k k



  




     
 

, (24) 

where Dk  is the phonon wave vector for bulk structures, Eq. (9). A density of phonon states in the 

ultrathin film is calculating by using the expression: 

 
 

min

kf 3 2 D
x y z 2

f 3

0 k0

3N N N a
D ( ) sin d d k dk v k ,

2



     


      
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which is reduced to: 
f 3 2

x y z

f 2 3

N N N a
D ( )

2 v





 . 

Debye frequency is determined from the normalization condition, which claims that the total number of 
phonon states must be equal to the number of atoms: 

 
f f
D D

min min

f 3

x y z 2 f

f x y z2 3

N N N a
D ( )d N d N N N 1 ,

2 v

 

 

   


      

from which follows: 

   

f f3 2
f 3 b 3z z

3 3D Df 2 f 2f f
z zz z

N 1 N 16 4 4
v sin sin

a N 3 N 32 N 2 2 N 2

  
 

 

 
       

 
, (25) 

where b

D  is Debye frequency for bulk structures, Eq. (10). By finding the ratio of the density of phonon 

states in ultrathin film and bulk structures at Debye frequencies, we are coming to the following 
conclusion: 

 

2
2 3f f f f f

3f D z D z z

b b b b f 2 f
b D z D z z z

D ( ) N N N 1 4
sin 1

D ( ) N N N 3 2 N 2

  

  

   
        
    

, (26) 

because of f b

z zN N . The consequences of this fact will be discussed in the Conclusion. 

The internal energy of the ultrathin film is: 

f f
D D

min minB

3 x2 3

f f B2 3 f x

D xk T

V T x
U d 9N k T dx ,

2 v T e 1
e 1







 




 
             

 

   (27) 

where:  f x y zN N N N 1  , min
min

B

x
k T


  and 

f f
f D D
D

B

T
x

k T T


  . In the - physically most interesting - low-

temperature region  f

Dx  , the expression for internal energy (27) becomes: 

min

min

3 3 x3 3 3

f f B f Bf x f x x

D Dx 0 0

T x T x x
U 9N k T dx 9N k T dx dx

T e 1 T e 1 e 1

     
      

        
  

 (28) 

The first integral on the right has a solution: 

3 4

x

0

x
dx

15e 1





 , 

while the other is solved by series expansion of a 
sub-integral function: 

 
1

t j t

j 1

e 1 e







 
, 

so the expression (28) transforms into: 

min
3 x4

3 j x

f f B f
j 1D 0

T
U 9N k T x e dx

15T

 
 



  
    
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 

 

By multiple partial integration we obtain: 

 
   min

4 4
3 2j x

f f B min min min3 2 3 4
f

j 1 j 1
D

T 1 3 6 6 6
U 9N k e x x x

15 j j j j jT

  
 

 

  
        

  
 

 (29) 

Thermal capacitance calculated by one elementary cell of the crystal is: 

 

   

min

3 3
4

4j x* f
f B B minf f

j 1f D D

3 2

min min min2 2 2 2 3

U1 12 T T 1 1
C k 9k e x

N T 5 j jT T

3 6 1 6 1 24
1 x 1 x 3 x .

jj j j j j

 
 



    
         

    
     

            
      



 (30) 
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We introduce the following substitutions: 

D

T

T
 T ,  min

f

D





 , 

 
 

f f
3D z

3 zf 2 f
D z z

N 1 4
sin f N

N 3 2 N 2

 

 


   


 

on the basis of which we can write: 

 
D

f f

zD D

T

f NT


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  

T
T ,  

f

D min f
min f

D

T
x

T

 


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T
 

so the Eq. (30) becomes: 
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

  
       

 
   

        
    

 T
T

T

T T T

 (31) 

Upon inclusion of the non-dimensional parameter: 
*

f
f

0

C
C

C
 , where 

4

0 B

12
C k

5


 , we get: 

   

f 43
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3f
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15 1 1 1 3
C e 1

j jf N 4 f N j

6 1 6 1 24
1 3 .

j j j j j







 

  


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        
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 T
T

T

T T T

 (32) 

In order to get the graphical thermal 
capacitance display depending on the temperature 
in the low-temperature region, we will take the 
following parameter values: 

 the speed of sound in crystal: 4v 10 m s ; 

 the lattice constant: 10a 10 m ; 

 Debye frequency in bulk: b 14

D 4 10 rad s   ; 

 minimum phonon frequency in ultrathin 

crystalline film (for zN 2 ): 
f 14

min 0,7854 10 rad s   . 

Temperature dependence of the thermal 
capacitance for the thin crystalline film and the 
corresponding bulk structure in the low temperature 
region is shown in Figure 5. 

 

Figure 5. The comparative graph of the temperature dependence of thermal capacitance 
for the ultrathin film  and bulk structure in the low temperature region 

Slika 5. Uporedni grafički prikaz temperaturske zavisnosti toplotne kapacitivnosti za ultratanki 
film i balk u niskotemperaturskoj oblasti 
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4. DIFFUSION PROCESS OF PHONONS  

Bearing in mind that the nanostructures are 

mainly the highly anisotropic materials, the thermal 

processes in them are conveniently described 

using phonon diffusion tensor. Heat transfer in 

various nanostructured materials is introduced by 

means of tensor elements, giving all combinations 

of phonons diffusion rates [20]. It should be noted 

that the phonon diffusion tensor is also applicable 

to isotropic materials, but with the condition that 

only diagonal elements are different from zero [21-

23]. 

The diffusion tensor can be defined by the 
Kubo formula in the following manner [24-25]: 

t

ij 0 i j
0

ˆ ˆD (k ) = lim dte v (0)v (t ) ,






     (33) 

where iv̂  and jv̂  are velocity operators (in 

Heisenberg representation) of oscillations of 
molecules in crystal along the crystallographic 

direction i , j ( x,y,z) , and   is the perturbation 

parameter. i j
ˆ ˆv (0)v (t )   are corresponding 

correlation functions. They will be calculated from 
their definition [15,26-27] (spectral theorem):  

   / G

nm nm nm
0

G ( i ) G ( i ) = e 1 C ( ),lim
 



    


     

where G

nm
C ( )  is the time - frequency Fourier's 

transform of the correlation function G

nm
C (t ) . For 

t = 0  the correlation functions represent the 

average values of the appropriate operators 
product. 

In order to obtain the correlation functions that 
are part of the equation for diffusion coefficient 

i j
ˆ ˆv (0)v (t )  , we make use of the Green's function 

of momentum-momentum type i jp (t ) | p (0)   

since i
i

p̂
v̂ =

m
 and 

j

j

p̂
v̂ =

m
, and averaging will be 

done with big canonic ensemble, while the 
boundary conditions will be considered in the 
system of equations for crystalline films Green's 
function [25,28-30]. The appropriate correlation 
functions are: 

i i
k k

f f
k kk

t t
C e e

p (t )p (0) =
/ /

e 1 e 1

 

  

 
   
   

 (34) 

Their inclusion in the formula for calculating the 

diffusion coefficient 
ijD (k )  of the phonon 

subsystem gives: 

ij 0 2

k

i i
k k

t t

0
k k

C
D (k ) = lim

M

t t
e e

e e dt,
/ /

e 1 e 1



 

 

 



 

 




 



 
  
   



 (35) 

and finally: 

f

ij 2 2

k

C
D (k ) = i .

M  
 (36) 

From this result it can be seen that the diffusion 
tensor of phonon system is diagonal, that is 

ii 2 2

k

C
D (k ) =

M  
, and that the eigenvalues have 

higher values for the lower frequencies. The latter 
conclusion is very meaningful because it supports 
the macroscopic theories of heat conduction which 
states that diffusion coefficient is temperature 
independent. This fact and its consequences are 
very important in the theory of phonon engineering, 
especially regarding modern nanostructures in 
terms of achieving high-temperature 
superconductivity. 

5. CONCLUSION 

The main topic and the principal goal of this 
paper are to show the extent to which dimensional 
limitation of phonon movement affects the physical 
properties of nanostructures (ultrathin films, in 
particular, but the same theoretical approach can 
be applied to the other nanostructures). This idea 
forms the basis of the concept of phonon 
engineering, which is in the centre of scientific and 
engineering interest in recent years. The study is 
motivated by efforts to explain many unusual 
physical (mechanical, thermodynamic and optical) 
properties of contemporary quasi 2D materials, 
which have the great potential for applications in 
many fields of science and technology, as much as 
for improvement of human life in general. 

Spatial limitation of acoustic and optical 
phonons in nanostructures significantly changes 
their properties in comparison with the massive 
materials. Their interactions are affected by the 
effects of dimensional confinement on the phonon 
modes in nanostructures, which results in a 
modification in the electron-phonon scattering 
rates, changes of the electrical, optical, acoustic 
and thermodynamic properties of the 
nanostructured materials, and phonon scattering 
on defects, boundaries and other phonons. Those 
modifications can be achieved by changing the 
lattice constant, i.e. dimensions of the ultrathin film, 
by inserting atoms of different kinds and by 
changing the external areas surrounding the 
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boundary layers of the nanostructure (i.e. 
parameters   and  ). 

It is a well-established fact that the phonons at 
Debye frequencies to the great extent affect the 
transport properties of materials. Since our results 
show that the density of phonon states in 
nanostructures is significantly lower than in the 
massive structures, the conclusion is that the 
nanofilm-structure is an inferior electrical and 
thermal conductor when compared to massive 
structures, providing there are no chemical and 
structural differences between them. On the other 
hand, it is also verified that the worse the conductor 
material is (under normal conditions), the better 
superconductor it becomes. Having this in mind, it 
can be concluded that in the spatially very limited 
structures the best superconducting properties can 
be expected, and also that the restriction of spatial 
dimensions of the structure plays a major role in 
improving superconducting properties of the 
material. 

Regarding the thermodynamic properties, in the 
low-temperature region, the thermal capacitance of 
the film is lower than in massive structures, 
contrary to the middle-temperature region where it 
is the opposite. With an increase of film-thickness, 
the point of intersection of two curves moves 
towards lower temperatures. In addition, it is 
notable that the thermal capacitance of the film 
declines faster with a decrease of temperature than 
that of corresponding massive structure, and slowly 
increases with the rise of temperature to a certain 
upper temperature. Therefore, increasing the 
temperature of the film requires more thermal 
energy per mass unit in comparison to the bulk 
(with the identical crystallographic parameters). 
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IZVOD 

UTICAJ FONONSKOG PODSISTEMA NA MEHANIČKE I TERMODINAMIČKE 
OSOBINE NISKODIMENZIONALNIH MATERIJALA 

Ovaj rad daje sažeti pre led uticaja fonono  podsistema na mehanička i termodinamička svojstva 
niskodimenzionalnih materijala  konkretno, ultratankih filmova , koji su predmet istraživanja naše  
tima već du i niz  odina. Ovakve studije postale su veoma važne za nauku o materijalima i 
inženjerstvo u poslednjih nekoliko  odina, zbo  veliko  potencijala komercijalizacije novih 
dvodimenzionalnih struktura, kao što je  rafen. Pokazano je kako kvantnomehanički efekat 
veličine utiče na promenu fizičkih osobina pomenutih struktura i detaljno su razmatrane posledice 
ovog uticaja. Teorijska analiza je sprovedena metodom dvovremenskih temperaturskih Grinovih 
funkcija, pomoću kojih su odre eni spektri dozvoljenih ener ijskih stanja fonona, kao i 
termodinamičke karakteristike navedenih struktura. Procesi difuzije tretirani su pomoću  ubo 
formule, prila o ene fononskim podsistemima u nanostrukturima. 

Ključne reči: Fononi, Grinove funkcije, ultratanki filmovi, specifična toplota, tenzor difuzije. 
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