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ABSTRACT 

This study focuses on the modeling and optimization of geothermal binary Organic Rankine Cycle 
(ORC) systems to enhance power generation from geothermal systems using water as geofluid. 
Aspen HYSYS, utilizing the Peng-Robinson property package, was used to simulate the process, 
generating critical process data for subsequent modeling and optimization. Response Surface 
Methodology (RSM) and an Artificial Neural Network (ANN) were employed to model the 
relationships between input factors and output response, utilizing a Box-Behnken Design (BBD) 
for three key input variables: working fluid flow rate, working fluid outlet pressure, and turbine 
outlet pressure. Both RSM and ANN demonstrated strong predictive capabilities, with RSM 
achieving an R2 value of 0.9966 and an RMSE of 12.254, while ANN achieved an R2 value of 
0.9886 and an RMSE of 23.722, indicating that RSM marginally outperformed ANN in terms of 
modelling accuracy. Optimization of the ORC system was conducted using RSM and ANN 
coupled with a Genetic Algorithm (ANN-GA), aimed at determining the optimal values for input and 
output parameters. The ANN-GA optimization results were validated using Aspen HYSYS and 
showed superior performance over RSM. ANN-GA predicted optimal values of working fluid flow 
rate, working fluid outlet pressure, and turbine outlet pressure as 12 kg/s, 19 bar, and 1.2 bar, 
respectively, which perfectly matched the Aspen HYSYS validation results. This optimization 
yielded a power output of 958.48 kW, which closely aligned with the Aspen HYSYS validation 
output of 952.9 kW, reflecting a minimal percentage error of 0.59%. Conversely, RSM predicted 
slightly deviated optimal values of 11.8 kg/s, 18.47 bar, and 1.2 bar, with a corresponding power 
output of 940.78 kW. When validated with HYSYS, the RSM-predicted output was 927.2 kW, 
resulting in a higher percentage error of 1.46%, thereby underperforming relative to ANN-GA. The 
study highlights the comparative strengths of RSM and ANN-GA, demonstrating that while RSM 
excels in accurately modeling the relationship and interactions between input factors and output 
responses, the ANN-GA framework exhibits a significantly higher capability in navigating complex 
nonlinear optimization landscapes. This highlights the effectiveness of integrating machine 
learning models with meta-heuristic algorithms for enhanced optimization performance. The 
findings contribute to advancing the methodology for optimizing geothermal ORC systems and 
offer a robust framework for improving power generation efficiency in geothermal energy 
applications. 
Keywords: Geothermal energy, RSM, ANN, genetic algorithm, Hysys simulation, Power 
generation, binary ORC systems 

 

1. INTRODUCTION 

The global reduction of fossil fuel resources 
and the need to mitigate carbon emissions are 
critical challenges faced worldwide. Despite these, 
energy demand continues to rise, necessitating 
alternative energy solutions to meet global 
requirements. Geothermal energy is a promising 
solution due to its abundance, eco-friendliness, and 
renewable nature [1, 2]. 
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As a clean energy resource, geothermal energy 
offers numerous advantages over other renewable 
sources, including its higher reliability, 
sustainability, and capacity factor. It is less affected 
by climatic conditions, making it a reliable source of 
energy, particularly in regions with geothermal 
reserves. 

Geothermal energy is derived from the Earth's 
subsurface, with temperatures ranging from 50°C 
to 350°C [3]. Geothermal resources can be 
classified into four main groups: hydrothermal, 
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magma, hot-dry rock, and geo-pressured [4]. 
Among these, hydrothermal resources are the most 
commonly utilized, existing in either vapor-
dominated or liquid-dominated forms, depending 
on geological conditions. Vapor-dominated 
systems typically exhibit temperatures between 
250°C and 300°C and produce superheated (dry) 
steam [5]. In contrast, liquid-dominated systems 
can generate wet steam or water, making them 
versatile in energy production [5, 6]. 

The utilization of geothermal energy for power 
generation is divided into two main categories: 
power generation systems and reinjection facilities 
(or alternative solutions for non-condensable 
gases) [7]. The former includes the production well 
and closed power cycle, while the latter deals with 
compressor trains and reinjection wells [8]. 
Geothermal power plants are a key method for 
harnessing geothermal energy and fall into three 
main types: dry-steam, flash, and binary [9]. Each 
technology is suitable for different temperature 
ranges. Dry-steam and flash systems are used for 
high-temperature sources (above 180°C), while 
binary plants are employed for lower temperature 
resources (below 180°C). 

Globally, dry-steam, flash, and binary 
technologies account for approximately 26%, 58%, 
and 15% of the market, respectively, with emerging 
technologies making up about 1% of facilities [1]. 
However, binary plants are becoming increasingly 
popular due to their flexibility in utilizing low-to-
medium-temperature resources. In fact, over 270 
binary power plants are currently operational 
worldwide [10]. 

In a dry-steam geothermal system, high-

temperature and high-pressure steam is directly 

extracted from underground and expanded through 

a steam turbine to drive an electricity generator [8]. 

Wet-steam geothermal systems, on the other hand, 

involve separating the wet steam into saturated 

steam and geothermal water ([11]. The saturated 

steam is expanded through a turbine to generate 

electricity, while the geothermal water can be 

flashed at lower pressure to produce additional 

steam, which is also used for power generation. 

This configuration allows for efficient use of 

geothermal resources, particularly in areas where 

wet-steam conditions prevail. 

While the traditional Rankine cycle using water 

as a working fluid is widely used for power 

generation, it is not always suitable for low- and 

medium-temperature geothermal resources. The 

boiling point of water is often too high for these 

resources, leading to inefficiencies [10]. 

Additionally, using steam cycles can result in 

issues such as turbine blade erosion, condensation 

during expansion, and the need for superheating, 

which complicates turbine design and increases 

costs. As a result, alternative cycles like the 

organic Rankine cycle (ORC), supercritical Rankine 

cycle, Kalina cycle, and flash cycle have been 

proposed for low-temperature heat conversion. 

The ORC is particularly well-suited for low-to-
medium-temperature geothermal applications due 
to its use of organic working fluids with lower 
boiling points than water. These organic fluids 
allow the ORC to utilize a wide range of heat 
sources [10]. The cycle operates similarly to the 
traditional Rankine cycle, where the working fluid is 
heated to boiling, and the resulting vapor drives a 
turbine that generates electricity. Afterward, the 
vapor is condensed back into a liquid and 
recirculated in the system. 

Binary cycle technology, which includes ORC 
and Kalina cycles, is often used for liquid 
geothermal sources or medium-to-low-temperature 
resources (100–170°C) [1]. One of the key 
advantages of binary systems is their enclosed 
geothermal fluid loop, which prevents 
environmental pollution by reinjecting potentially 
harmful geothermal fluids back underground. In 
ORC-based binary geothermal power plants, the 
organic working fluids ensure system efficiency and 
environmental safety [12]. 

Despite the benefits, creating an efficient binary 
ORC system remains a significant challenge for the 
geothermal industry [13]. These systems require 
substantial capital investment, making proper 
planning and design essential. Research and 
development efforts focus on field tests, numerical 
modeling, simulation, and optimization to enhance 
system performance [1]. 

A successful binary ORC system must 
generate sufficient heat to produce electricity and 
maintain a production life of at least 30 years. 
Understanding and optimizing key parameters, 
including fluid properties, cycle efficiency, and 
resource characteristics, is crucial to improving 
system performance. By systematically testing 
various parameter combinations, engineers can 
design more efficient and cost-effective geothermal 
systems, thereby contributing to the global energy 
transition [14]. 

In optimization studies and experimental 
setups, process variables often depend on or 
interact with one another. Understanding the 
output-input relationships requires a deep 
comprehension of these interactions. Evaluating all 
possible combinations of parameters can be time-
consuming, especially when running complex 
numerical simulations [13]. To address this 
challenge, numerical simulations are often used to 
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study the effects of individual parameters, which 
are then used to design surrogate models. These 
models help streamline system development, 
reducing the time required for optimization while 
maintaining accuracy [14]. 

In the design of thermo-power generation 
blocks for binary Organic Rankine Cycle (ORC) 
systems using H2O as the geothermal working 
fluid, various factors significantly influence 
performance, including cycle layout parameters, 
design specifications, and the variability of heat 
source and heat sink conditions [14]. Optimization 
of such systems is essential for maximizing 
efficiency and output, and the Response Surface 
Methodology (RSM) serves as a powerful and 
versatile tool for this purpose [15, 16]. RSM is a 
statistical and mathematical approach designed for 
constructing experimental models, analyzing 
variations in input factors, and generating a 
response surface that relates these variables to the 
desired output ([17]. By employing carefully 
structured experimental designs, such as Box-
Behnken or Central Composite Designs, RSM 
facilitates the exploration of complex parameter 
spaces with high efficiency. This enables the 
identification of relationships between multiple input 
variables and the response variable, thereby 
allowing for simultaneous analysis and optimization 
[18]. 

The response surface generated by RSM 
provides a detailed map of how changes in input 
variables affect the system's output, making it a 
reliable method for identifying optimal ranges for 
key input parameters. This capability is particularly 
valuable in geothermal systems, where factors 
such as turbine inlet conditions, working fluid 
properties, and thermal efficiency must be fine-
tuned to achieve maximum power output. RSM has 
been successfully applied in various studies to 
optimize and predict performance in ORC systems 
[18]. Its applications include turbine design 
optimization, where the geometry and operating 
conditions are adjusted for peak performance, and 
determining input parameters for maximizing 
thermal efficiency and output in geothermal power 
cycles [15]. By providing a systematic and 
statistically robust approach, RSM reduces the time 
and computational effort required for optimization 
while ensuring reliable and accurate predictions 
[17, 19].  

Many scholars have investigated the use of 

RSM for modelling and optimisation of geothermal 

systems. Assareh et al. [18] employed RSM with 

Design-Expert software to optimize a geothermal-

based energy system producing liquid hydrogen, 

cooling, hot water, and power. Using R123 as the 

working fluid, optimal exergy efficiency (43.91%) 

and cost rate (45.12 $/h) were determined. RSM 

effectively modeled and analyzed the impact of 

design variables, identifying Regina, Canada, as 

the optimal location based on performance and 

environmental benefits. Al Jubori et al. [20] 

employed RSM as part of a multi-objective 

optimization methodology integrating mean-line 

design, 3D CFD analysis, and ORC modeling for a 

small-scale radial-inflow turbine. Blade geometry 

was optimized using 20 design points, achieving 

13.95% and 17.38% improvements in turbine and 

cycle thermal efficiencies, respectively. Kazemian 

et al. [21] utilized RSM with the central composite 

design to optimize input parameters for a combined 

GT/ORC/ARS system, demonstrating its superior 

economic performance over GT/ORC/GSHP 

systems. Sensitivity analysis further evaluated 

economic parameters like payback period and 

NPV. Azizi et al. [22] integrated RSM with grey wolf 

optimization for a geothermal-natural gas 

cogeneration system. Optimization achieved 45.2% 

exergy efficiency and a unit product cost of 3.82 

$/GJ, highlighting RSM's role in enhancing 

performance and profitability. 

In recent years, machine learning methods 
have revolutionized the optimization and 
performance enhancement of Organic Rankine 
Cycle (ORC)-based plants. Among these methods, 
Artificial Neural Networks (ANNs) have 
demonstrated exceptional capabilities in predicting, 
classifying, and approximating functions, 
particularly in handling complex and nonlinear 
relationships [23]. This has made ANNs an 
indispensable tool for solving real-world challenges 
across diverse applications, including shallow 
geothermal systems. ANNs, particularly those 
implementing backpropagation algorithms, have 
been pivotal in advancing geothermal energy 
operations, enhancing efficiency and sustainability 
[23]. The integration of machine learning 
techniques in ORC systems began with their 
application to predict and optimize system 
performance [24]. 

Tugcu and Arslan [25] applied a two-stage 

ANN model to optimize a geothermal absorption 

refrigeration system, analyzing 3660 designs with 

energy, exergy, and NPV metrics. ANN trained with 

backpropagation algorithms achieved error rates as 

low as 0.07%, effectively predicting and optimizing 

COP and exergy efficiency. Ziviani et al. [26] 

developed an ANN to predict performance in ORC 

experiments using scroll expanders, achieving high 

accuracy for turbine parameters like inlet pressure 

and rotation speed. Yilmaz and Koyuncu [27] 

modelled and optimized the Afyon Geothermal 

Power Plant using a multi-layer ANN with a genetic 
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algorithm, achieving energy and exergy efficiencies 

of 10.4% and 29.7%. The optimized payback 

period and exergy cost were calculated as 2.87 

years and $0.0176/kWh, respectively.  Cetin et al. 

[28] modeled a binary geothermal power plant 

(GPP) with ANN to optimize thermodynamic 

performance. By analyzing reference point data, 

the model estimated power output and exergy 

efficiency, determining the best parameter 

configurations for maximum performance. Yilmaz 

and Sen [29] utilized an ANN-based Genetic 

Algorithm (GA) to optimize a geothermal and solar-

assisted energy and hydrogen production system 

under varying climatic and operational conditions. 

The ANN-GA model predicted power output and 

hydrogen production, achieving a cost of hydrogen 

at $1.576/kg and a unit electricity cost of 

$0.027/kWh. 

Chanthamaly et al. [30] applied ANN 
classification algorithms to predict maintenance 
schedules for geothermal wells, achieving 99.83% 
accuracy using K-means clustering. The ANN-
supported predictive maintenance ensured system 
reliability and minimized power loss. Xue et al. [23] 
proposed an ANN-Differential Evolution (DE) 
optimization framework for a three-horizontal-well 
EGS, achieving a low LCOE of $0.0376/kWh, with 
ANN models demonstrating high predictive 
accuracy (R² > 0.996) and significant time savings 
(36,000x faster than simulations). Hsieh et al. [31] 
trained an ANN using data from a 3D axial turbo-
expander model to predict key cycle parameters 
under off-design conditions, enabling long-term 
performance analysis for geothermal fields.  Zhou 
et al. [32] Introduced a hybrid framework combining 
ANN with mathematical programming to optimize 
ORCs, achieving high classification (99% 
accuracy) and regression (mean errors <1%) 
performance. The mixed-integer linear 
programming (MILP) approach significantly 
reduced computational time while optimizing net 
exergy to 28.66 MW.  

Chitgar et al. [33] used ANN-GA for multi-
objective optimization of geothermal-based 
desalination systems, identifying configurations that 
improved power generation by 150% and water 
production by 60%, while evaluating optimal 
working fluid combinations under different 
temperatures. Shakibi et al. [34] evaluated ANN 
algorithms for optimizing geothermal-hydrogen 
systems in Australia, achieving a 46.27% exergy 
efficiency, 1.84-year payback, and high accuracy 

(mean absolute error: 2.28×10⁻¹⁴) in predicting 
system performance under multi-objective 
scenarios. Ling et al. [35] developed an ANN-
based prediction and optimization model for a 
binary cycle geothermal power plant. The model 

controlled working fluid circulation rates, optimizing 
net power production and reducing costs, 
outperforming traditional physics-based 
approaches. Farajollahi et al. [36] combined ANN 
with response surface methodology (RSM) for 
hybrid power plant optimization, using ANN to map 
independent variables to thermal efficiency and 
cost. The GA-based optimization identified 
parameters achieving a thermal efficiency of 
30.47% and a levelized product cost of $13.04/GJ. 

2. LITERATURE REVIEW 

2.1. ORC Cycle Working Fluids 

The performance of an ORC system is highly 
dependent on the choice of working fluid, making 
this selection a critical factor in system design and 
efficiency. Selecting the most suitable organic 
working fluid involves considering a variety of 
parameters, including thermodynamic properties, 
environmental impact, safety concerns, and 
economic factors. These criteria collectively 
influence the overall efficiency, cost, and 
sustainability of the ORC system [1]. 

From an environmental and safety perspective, 
working fluids must comply with strict regulations 
related to Global Warming Potential (GWP) and 
Ozone Depletion Potential (ODP). Fluids used in 
ORC systems should have a GWP below 150 and 
exhibit no ODP to minimize environmental harm, in 
line with global climate targets and environmental 
protection efforts [33]. Furthermore, the working 
fluids should also possess favourable safety 
characteristics, such as low flammability and 
toxicity. The careful selection of non-hazardous 
fluids helps to reduce operational risks and ensures 
compliance with safety regulations in industrial 
settings [37]. 

When choosing a working fluid, other critical 
factors include thermodynamic properties that 
directly affect the system's efficiency. Fluids with 
low specific volumes are preferred because they 
reduce the size and cost of key components such 
as condensers [38, 39]. Additionally, fluids should 
exhibit favourable liquid-specific heat, viscosity, 
and thermal stability, which play essential roles in 
efficient heat transfer and long-term operation. 
High latent heat and density are also important as 
they enhance output power and ensure better 
performance, particularly in combined cycle 
applications [12, 13]. The molecular weight of the 
fluid should be compatible with the turbine’s 
design, and the fluid must be stable under the 
operational temperatures and pressures, avoiding 
issues like material degradation or chemical 
breakdown. Fluids must also be non-corrosive and 
compatible with turbine materials and lubricating 
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oils to ensure system longevity and minimal 
maintenance. 

Saturation pressure is another important 
consideration, as higher pressures (typically >100 
kPa) are required to prevent air or gas infiltration, 
which could reduce system efficiency [39]. At the 
same time, fluids with moderate heat exchanger 
pressures are preferred because they allow for 
safer and more manageable system designs. 
Overall, the selection of a working fluid that 
balances these thermodynamic and material 
compatibility properties is essential for optimizing 
both performance and cost [40]. 

Working fluids can be categorized into three 
main types based on the slope of their 
temperature-entropy (T-S) saturation curve during 
the expansion process: wet fluids, dry fluids, and 
isentropic fluids. Wet fluids, such as water, exhibit 
a negative slope, which means that during 
expansion, condensation occurs, leading to two-
phase mixtures of liquid and vapour [3]. This can 
cause erosion in turbines due to the presence of 
liquid droplets, making wet fluids less desirable for 
ORC systems. Dry fluids, including hydrocarbon 
gases such as propane, butane, pentane, and 
hexane, exhibit a positive slope, meaning that they 
remain in a superheated vapor state during 
expansion, avoiding condensation and preventing 
turbine erosion [41]. Isentropic fluids, such as 
toluene and R245fa, exhibit a vertical slope and 
maintain an ideal balance during expansion [1]. 
However, their high GWP has made them less 
favourable for use in ORC systems due to 
environmental concerns. 

Historically, water has been widely used as a 
working fluid in large-scale Rankine cycles, 
especially in high-temperature, fossil fuel-fired 
plants. However, at lower temperatures, water 
becomes less efficient due to its high specific heat 
and latent heat of vaporization. This makes it 
unsuitable for ORC applications, which often 
operate at lower temperatures [42]. Organic fluids, 
on the other hand, offer significant advantages over 
water in ORC systems. They require less heat to 
evaporate and eliminate the need for superheating, 
making the cycle design simpler and more efficient 
[43]. These organic fluids generally maintain a 
superheated vapor state during isentropic 
expansion through a turbine, preventing the 
formation of two-phase mixtures and simplifying 
turbine design [44]. As a result, ORC systems can 
operate with less complexity, reduced risk of 
turbine erosion, and lower maintenance costs. 

One of the most significant advantages of using 
dry working fluids in ORC systems is their ability to 
maintain the superheated vapor state throughout 
the expansion process [45]. This prevents the 

formation of liquid droplets that could damage 
turbine blades, making dry fluids more desirable 
than wet fluids for ORC applications. Although 
isentropic fluids offer good thermodynamic 
properties, their higher global warming potentials 
(GWP) has led to a decline in their use, especially 
as global efforts to reduce greenhouse gas 
emissions intensify. Additionally, organic fluids 
derived from petroleum exhibit lower evaporation 
energy than water, requiring less heat for 
vaporization [46, 47]. This makes them particularly 
well-suited for ORC systems that operate at lower 
temperatures, such as those used in geothermal, 
waste heat recovery, and solar thermal applications 
[48, 49]. 

As the need for sustainable and efficient 
energy solutions grows, the choice of working fluids 
in ORC systems is increasingly guided by both 
environmental considerations and performance 
metrics [50]. The focus is shifting towards fluids 
that not only offer high efficiency but also align with 
stricter environmental regulations. In response to 
these challenges, research and development 
efforts continue to focus on discovering new 
working fluids with low GWP, zero ODP, and 
optimal thermodynamic properties to improve the 
overall sustainability and performance of ORC 
systems.  

2.2. Material challenges in Geothermal ORC 
systems 

Geothermal Organic Rankine Cycle (ORC) 
systems operate under extreme conditions due to 
the high temperature, pressure, and chemically 
aggressive nature of geothermal fluids. These 
factors lead to significant material degradation, 
particularly corrosion in turbines, heat exchangers, 
and pipelines. The selection of corrosion-resistant 
materials is crucial to ensuring the long-term 
durability and efficiency of ORC components. This 
section explores the major corrosion mechanisms 
affecting these components and highlights 
materials that have demonstrated resilience in 
harsh geothermal environments [51]. 

Corrosion in geothermal ORC systems arises 
primarily due to the presence of dissolved gases 

such as carbon dioxide (CO₂) and hydrogen sulfide 

(H₂S), as well as chloride-rich geothermal brines. 

General corrosion occurs when the entire surface 
of a material undergoes uniform degradation due to 
its reaction with geothermal fluids, often leading to 
thinning and structural weakness over time. In 
contrast, localized corrosion, such as pitting and 
crevice corrosion, occurs in specific areas where 
aggressive ions concentrate, leading to rapid 
penetration and failure of the material [52]. Stress 
corrosion cracking (SCC) is another prevalent 
issue in geothermal environments, resulting from 
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the combined effects of tensile stress and corrosive 
fluid interactions, which can lead to sudden 
material failure, particularly in turbine blades and 
piping. Additionally, erosion-corrosion accelerates 
material degradation due to the mechanical impact 
of high-velocity geothermal fluids carrying 
suspended particulates, leading to severe wear 
and loss of material integrity [53]. 

2.2.1. Corrosion-Resistant Materials for 
Geothermal ORC Systems 

The selection of appropriate materials for 
geothermal ORC systems is essential to combat 
the detrimental effects of corrosion. Stainless 
steels such as 316L, Duplex 2205, and Super 
Duplex 2507 are commonly employed due to their 
excellent resistance to chloride-induced pitting and 
stress corrosion cracking. These materials contain 
high levels of chromium, molybdenum, and 
nitrogen, which enhance their protective passive 
film formation, thereby improving their resistance in 
aggressive geothermal environments [52]. Stress 
corrosion cracking (SCC) is another prevalent 
issue in geothermal environments, resulting from 
the combine. Nickel-based alloys, such as Inconel 
625 and Hastelloy C-276, exhibit superior 
performance in highly acidic and oxidizing 
conditions, making them suitable for heat 
exchangers and other critical ORC components. 
Titanium alloys, particularly Ti-6Al-4V, are widely 
recognized for their exceptional resistance to 
corrosion in chloride-rich geothermal brines, 
preventing structural failures in pipelines and other 
submerged components [51]. 

Protective coatings and linings serve as 
additional barriers against corrosion by preventing 
direct contact between metal surfaces and 
aggressive fluids. Epoxy and polymer-based 
coatings are extensively used in pipelines and heat 
exchangers, providing a non-permeable barrier 
against chemical attack [52]. Stress corrosion 
cracking (SCC) is another prevalent issue in 
geothermal environments, resulting from the 
combine. Thermal spray coatings, which include 
metal-based, ceramic, and composite coatings, are 
often applied to high-temperature components to 
improve resistance to oxidation and erosion. 
Ceramic coatings, in particular, are highly effective 
in geothermal environments due to their excellent 
thermal stability and chemical inertness. 
Additionally, composite materials such as fiber-
reinforced polymers (FRP) are gaining popularity 
due to their lightweight nature and remarkable 
resistance to chemical degradation [53].  Recent 
advancements in graphene-based coatings have 
also demonstrated promising results in enhancing 
the longevity of ORC components by providing 

ultra-thin, highly corrosion-resistant protective 
layers. 

The effectiveness of corrosion-resistant 
materials and coatings has been demonstrated in 
several geothermal ORC plants worldwide. In 
Icelandic geothermal plants, extensive use of 
titanium alloys in heat exchangers has significantly 
reduced failures caused by chloride-induced 
corrosion [54]. At the Salton Sea Geothermal Field 
in the United States, nickel-based alloys have been 
successfully implemented in turbine components to 
withstand high concentrations of hydrogen sulfide, 
thereby enhancing operational longevity. In Japan, 
geothermal facilities have adopted duplex stainless 
steels in piping systems to prevent stress corrosion 
cracking, minimizing the risk of catastrophic 
failures. Ongoing research continues to focus on 
developing novel materials, hybrid coatings, and 
composite structures to further improve the 
durability and efficiency of geothermal ORC 
systems. Nanostructured materials and self-healing 
coatings represent particularly promising 
innovations, as they can actively repair micro-
damages and extend the operational lifespan of 
components [55]. 

2.2.2. Protective Coatings for Erosion and Thermal 
Degradation 

Protective coatings play a crucial role in 
enhancing the durability and performance of 
geothermal ORC system components. These 
coatings serve as a barrier against erosion, high-
temperature degradation, and chemical attack from 
geothermal fluids. The selection of appropriate 
coatings depends on factors such as operating 
temperature, fluid composition, and mechanical 
stresses encountered in the system [54]. 

Thermal spray coatings, which include metallic, 
ceramic, and cermet-based solutions, provide high 
resistance to oxidation and wear in elevated-
temperature environments. Metallic coatings, such 
as those based on nickel-chromium (NiCr) and 
molybdenum, form a protective oxide layer that 
minimizes the effects of high-temperature corrosion 
[56]. Ceramic-based coatings, including aluminum 

oxide (Al₂O₃) and zirconium oxide (ZrO₂), offer 

superior thermal insulation and resistance to 
chemical attack, making them ideal for use in 
turbine components and high-temperature heat 
exchangers. Cermet coatings, composed of 
tungsten carbide-cobalt (WC-Co) and chromium 

carbide-nickel-chromium (Cr₃C₂-NiCr), provide 

exceptional wear resistance, ensuring prolonged 
durability in harsh geothermal conditions [55]. 

Polymer-based coatings, including epoxy and 
polyurethane coatings, are widely used for 
corrosion protection in geothermal pipelines and 
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heat exchangers. These coatings form an 
impermeable barrier that prevents direct exposure 
to aggressive geothermal fluids, thereby mitigating 
material degradation. Additionally, polytetrafluoro 
ethylene (PTFE) and fluoropolymer coatings offer 
low surface energy, reducing scaling and biofouling 
in ORC systems. Recent advancements in 
nanostructured coatings, such as graphene and 
carbon-based solutions, have demonstrated 
remarkable chemical resistance and mechanical 
strength, making them attractive candidates for 
next-generation geothermal applications [56]. The 
development of self-healing coatings further 
enhances the reliability of ORC components by 
enabling autonomous repair of minor damages, 
thereby extending operational life and reducing 
maintenance costs [55]. 

2.2.3. Material Compatibility with Working and 
Geothermal Fluids 

Material compatibility is a critical consideration 
in geothermal ORC systems to ensure that 
components can withstand the chemical and 
thermal conditions imposed by both working fluids 
and geothermal brines. High-salinity brines pose a 
significant challenge due to their aggressive nature, 
necessitating the use of corrosion-resistant 
materials such as titanium alloys and duplex 
stainless steels [57]. These materials exhibit 
exceptional resistance to chloride-induced 
corrosion, thereby preventing premature failure in 
pipelines and heat exchangers. Exposure to 

hydrogen sulfide (H₂S) can accelerate material 

degradation, particularly in carbon steels. Nickel-
based alloys, such as Hastelloy C-276, have 
proven effective in mitigating sulfide-induced 
corrosion, ensuring long-term reliability in 
geothermal environments [58]. 

Working fluids used in ORC systems also 
impact material compatibility. Hydrocarbon-based 
ORC fluids, including isopentane and toluene, 
require elastomers and seals that resist swelling 
and degradation. Ammonia-water mixtures, 
commonly used in Kalina cycle systems, are highly 
corrosive to copper-based alloys, necessitating 

alternative material selections. Supercritical CO₂-
based ORC systems impose additional challenges, 
as carbon steel components may experience 
accelerated degradation under high-pressure 
conditions. Stainless steels and ceramic coatings 
have demonstrated improved resistance in such 
environments, offering viable solutions for long-
term durability [57]. 

2.3 Material Behavior under Geothermal Conditions  

2.3.1. Impact of Geothermal Fluids on Material 
Degradation 

The study of material degradation in 
geothermal Organic Rankine Cycle (ORC) systems 
requires a thorough investigation of the effects of 
geothermal fluids on structural materials over 
extended periods. Laboratory and field studies 
have been conducted to analyze corrosion, scaling, 
and material deterioration under geothermal 
conditions. These studies provide critical insights 
into how different material compositions perform in 
aggressive environments characterized by high 
salinity, dissolved gases, and elevated 
temperatures [59]. 

Electrochemical and accelerated aging tests 
serve as fundamental methods for evaluating 
corrosion rates and predicting material longevity. 
Electrochemical impedance spectroscopy (EIS) 
and potentiodynamic polarization techniques are 
widely used to assess the passivation behavior of 
metals and alloys in geothermal brines. 
Accelerated aging tests, including high-temperature 
autoclave exposure and cyclic immersion tests, 
replicate the long-term effects of geothermal fluids 
on materials within a controlled timeframe [60]. By 
systematically studying the degradation behavior of 
materials such as carbon steel, stainless steel, 
nickel-based alloys, and titanium alloys, 
researchers can determine their suitability for 
geothermal ORC applications. 

Comparative studies between conventional and 
advanced materials reveal significant differences in 
their resistance to geothermal-induced 
degradation. While carbon steels remain 
susceptible to pitting and stress corrosion cracking 
in chloride-rich environments, duplex stainless 
steels and superalloys demonstrate superior 
resistance, attributed to their enhanced passive film 
stability and alloying elements such as chromium 
and molybdenum [60]. Titanium-based materials 
exhibit exceptional corrosion resistance but pose 
economic constraints due to their high cost. The 
incorporation of protective coatings further 
enhances material performance by providing an 
additional barrier against aggressive geothermal 
fluids [61]. 

2.3.2. Performance of Advanced Materials and 
Coatings 

The effectiveness of corrosion-resistant alloys 
and coatings in geothermal ORC systems has 
been extensively investigated through experimental 
testing and numerical simulations. Numerous 
studies have examined the application of thermal 
spray coatings, polymer-based linings, and 
advanced ceramic coatings in mitigating wear, 
corrosion, and high-temperature degradation. 
Experimental methods, such as scanning electron 
microscopy (SEM) and X-ray diffraction (XRD), 
provide in-depth characterization of coating 
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integrity and failure mechanisms under extreme 
conditions. These techniques help assess the 
adhesion strength, porosity, and microstructural 
evolution of coatings subjected to geothermal 
environments [62]. 

Computational methods play an increasingly 
vital role in predicting material behavior under 
geothermal conditions. Computational fluid 
dynamics (CFD) and finite element analysis (FEA) 
are widely employed to simulate fluid-material 
interactions and predict the effects of erosion, 
scaling, and thermal stress on ORC components. 
CFD modeling enables the evaluation of fluid 
velocity profiles and turbulence-induced 
degradation, allowing engineers to optimize 
pipeline and heat exchanger designs for reduced 
wear [63].  FEA simulations assess mechanical 
stresses imposed on materials due to cyclic 
thermal loading and pressure fluctuations, ensuring 
that critical components such as turbine blades and 
heat exchanger tubes maintain structural integrity 
over prolonged operational periods. 

In addition to experimental and computational 
studies, ongoing research is dedicated to 
identifying novel materials that offer enhanced 
durability in geothermal ORC applications. 
Graphene-based coatings, self-healing polymers, 
and nano-structured surface modifications are 
among the emerging technologies being explored 
for their ability to resist corrosion and erosion while 
maintaining mechanical strength [63]. These 
advanced materials promise to extend component 
lifespan and reduce maintenance requirements, 
thereby improving the economic feasibility of 
geothermal ORC plants [64]. 

2.3.3. Strategies for Enhancing ORC Component 
Lifespan 

Ensuring the longevity of ORC system 
components requires the implementation of 
effective maintenance, monitoring, and material 
selection strategies. The use of corrosion inhibitors, 
for example, has proven beneficial in reducing the 
rate of material degradation by forming protective 
films on metal surfaces. Chemical treatments 
involving phosphate- and molybdate-based 
inhibitors have demonstrated success in 
geothermal applications by minimizing localized 
corrosion in heat exchangers and pipelines [65]. 

Predictive maintenance, enabled by real-time 
monitoring technologies, provides a proactive 
approach to identifying material degradation before 
catastrophic failures occur (Izuwa et al., 2024). 
Sensors equipped with electrochemical monitoring 
capabilities can detect changes in material 
passivation and corrosion rates, allowing operators 
to take preventive action. Non-destructive testing 
(NDT) methods, such as ultrasonic thickness 

gauging and eddy current testing, further contribute 
to the early detection of material wear and 
structural defects, facilitating timely repairs and 
replacements [64]. 

Material innovations, including self-healing 
coatings and nano-structured materials, offer 
promising advancements in extending the service 
life of ORC components. Self-healing coatings, 
which contain microencapsulated corrosion 
inhibitors, can autonomously repair minor surface 
damages, preventing the initiation of corrosion 
sites. Nanostructured surface treatments, such as 
plasma-assisted deposition techniques, enhance 
material resistance to erosion and fouling by 
altering surface roughness and chemical reactivity 
[66]. 

Best practices in material selection remain 
paramount to optimizing ORC system durability. 
The integration of duplex stainless steels, nickel-
based superalloys, and advanced ceramic coatings 
ensures that components can withstand the 
combined effects of geothermal fluid exposure and 
thermal cycling [67]. By aligning material selection 
with the specific operating conditions of geothermal 
ORC systems, engineers can minimize unplanned 
downtime, reduce maintenance costs, and 
enhance overall system efficiency [68]. Continuous 
research and technological advancements in 
material science will further contribute to the 
development of next-generation materials capable 
of withstanding the extreme conditions of 
geothermal ORC environments, thereby ensuring 
sustainable and long-term energy production [69]. 

3. METHODS 

The method consists of three different parts 
including the process simulation of the geothermal 
binary ORC system for electricity generation, the 
implementation of the surrogate models comprising 
RSM and ANN to investigate the interrelationship 
between influencing parameters and output, and 
the model optimisation using RSM and ANN-GA for 
optimal parameter conditions. The methods 
comprise the following 

 Process modelling using Hysys to conduct 
modelling and simulation of geothermal binary 
ORC system using water and isopentane as 
geofluid and working fluid respectively and in 
conducting simulation runs for different input 
datasets generated with the Box-Behnken 
design (BBD) method 

 Developing surrogate model for RSM modelling 
and ANN modelling using Design Experts and 
MATLAB respectively to determine the 
relationship between decision variables and 
output response and approximate the design 
space. 



U. J. Obibuike et al. Modelling and optimisation of geothermal binary ORC systems ... 

 ZASTITA MATERIJALA 66 (2025) broj 9 

 Perform optimization based on the modelled 
design space using RSM optimization and a 
coupled artificial neural network model and 
genetic algorithm (ANN-GA) 

3.1. Process Modelling and Simulation 

3.1.1. Process Model 

The model utilised by Hysys is based on mass 
and energy balance in steady state condition. The 
steady-state energy models for the ORC system 
are given below 

∑ 𝑚̇𝑖𝑛 = ∑ 𝑚̇𝑜𝑢𝑡 (1) 

∑ 𝑄 + ∑ 𝑚̇𝑖𝑛ℎ𝑖𝑛 = ∑ 𝑊 + ∑ 𝑚̇𝑜𝑢𝑡ℎ𝑜𝑢𝑡 (2) 

𝑊𝑛𝑒𝑡 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑒 − 𝑊𝑝𝑢𝑚𝑝 (3) 

𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑒 = 𝑚̇𝑓(ℎ𝑖𝑛 − ℎ𝑜𝑢𝑡) (4) 

Where 𝑚̇ (kg /s) is the mass flow rate, h is the 
specific enthalpy of the system’s working fluid 
streams, (kJ/kg), Q represent the heat energy 
passing via the component boundaries, (Watts), W 
is the work energy passing via the component 
boundaries, (Watts), Wnet is the net work, Watts, 
Wturbine is the turbine work, Watts, Wpump is the 
pump work, Watts, 𝑚̇𝑓 is the mass flow rate, hin is 

the specific enthalpy at the turbine entry, hout is 
the specific enthalpy at the exit of the turbine 

3.1.2. Model Simulation 

The simulation model made with Aspen Hysys 
v11 software consists of; Evaporator, Turbine, 
Condenser, and Circulating Pump. The model 
consists of three different loops; first the heating 
loop which is the hot water rising from the 
abandoned oil and gas well, the ORC loop which is 
the working fluid (i-C2H5), and finally the cooling 
cycle for the condenser which is also water. 

The scheme of the ORC power plant is shown 
in Fig. 1, displaying the heating loop which is the 
hot water rising from the abandoned oil and gas 
well, the ORC loop which is the working fluid (i-
C2H5), and finally the cooling cycle for the 
condenser which is also water. An ORC power 
cycle utilizing i-C2H5 as working fluid is fed (stream 
#3) through a condensing heat exchanger (E100 
and E101), which is pressurized at about 10 bars. 
The ORC scheme comprehends an evaporator, a 
turbine, a condenser, and a pump which were 
modelled as heat exchangers, expander, air cooler 
and pump in Hysys respectively. The process flow 
diagram (PFD) for the ORC process simulated in 
Hysys is given in Figure 3 

 

Figure 1. Process flow diagram (PFD) of the geothermal binary ORC system 

The geofluid which is hot water comes from the 
wells and enters into HEX1 (E-100) and 
subsequently to HEX2 (E-101). iC2H5 is pumped 
into the heat exchangers and extracted heat both 
from HEX2 and HEX1 and then exits HEX1 
towards the turbine. At the turbine, iC2H5 was 
vapourised andexpandedthus rotating the turbine 
leading to the generation electric power. The iC2H5 

exits the turbine at lower temperature and pressure 
and goes to the air cooler where it is cooled and 
then pumped back to the HEXs to continue the 
cycle. Water that came out from the outlet of HEX2 
was injected back into the well and the cycle 
continues. Throughout the process, the turbine, 

pump, and compressor stages are assumed to be 
adiabatic devices. Negligible pressure losses occur 
in the components of the ORC and its piping 
system. Neglecting the changes of kinetic and 
potential energies, the mass and energy balance 
equations in the steady-state condition can be 
applied to each component. 

3.2. Development of Surrogate Model 

The surrogate model comprises the RSM and 
ANN conducted to investigate the relationship 
between input parameters and power produced. 
The surrogate models are applied to dual functions 
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which includes design space approximation and 
optimisation.  

3.2.1. RSM Modelling 

A response surface methodology (RSM) model 
was implemented using Design-Expert software to 
predict geothermal power generation by applying 
regression analysis to the experimental data 
obtained through a Box-Behnken design (BBD). 
The BBD incorporated three independent variables 
which were found to have impact on the 
geothermal power generation; these include: 
working fluid (iC2H5) flowrate (kg/s), working fluid 
inlet pressure (bar) and turbine outlet pressure 
(bar). Several regression models were tested and 
evaluated to identify the one with the highest 
performance and accuracy, most the independent 
variables. The flowchart in Figure 2 illustrates the 
steps involved in the RSM modelling. The RSM 
selected the best regression model based on 
statistical parameters such as R², adjusted R², 
predicted R², standard deviation, and coefficient of 
variation (COV). Multiple regression analyses 

facilitated the fitting of these models to the 
simulation data, allowing for the estimation of 
responses from independent variables using their 
general equations. Some of the equations for 
several models in RSM is given below.  

The general form of the models for linear 

regression is given as 

𝑦 = 𝑎𝑜 + ∑ 𝑎𝑖𝑥𝑖 + 𝑒𝑘
𝑖=1  (5) 

The general form of the 2FI regression model is 
given as 

𝑦 = 𝑎𝑜 + ∑ 𝑎𝑖𝑥𝑖 +𝑘
𝑖=1 ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + 𝑒𝑘

𝑖<𝑗  (6) 

The general form of the quadratic regression 
model is given as 

𝑦 = 𝑎𝑜 + ∑ 𝑎𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑘
𝑖<𝑗 + ∑ 𝑎𝑖𝑖𝑥𝑖

2 + 𝑒𝑘
𝑖=1  (7) 

Where 𝑥𝑖,𝑥𝑗, 𝑥𝑙,  are the input variables and   

𝑎𝑖, 𝑎𝑖𝑗, 𝑎𝑖𝑖,and 𝑎𝑖𝑗𝑙 are the coefficient of each of the 

terms, 𝑎𝑜 is the offset and e is the residual or error 

term 
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Figure 2. RSM Modelling Flowchart 

3.5.2. ANN Modelling 

The ANN model was developed using MATLAB 
by training with simulation data from the BBD, 
aiming to create a network capable of accurately 
modellinggeothermal power generation based on 
the input of independent variables. The model was 
constructed using a dataset of 17data points, with 
70% of the data allocated for training, 15% for 
testing, and 15% for validation. The ANN model 
employed in this study utilizes a feed-forward 
neural network architecture, following the 
backpropagation learning principle. The network 
architecture consists of an input layer, a hidden 
layer, and an output layer. Various configurations 
of neurons in the hidden layer were tested, with the 

optimal network topology determined iteratively by 
evaluating network performance indices. Training 
of the network was performed using the 
Levenberg-Marquardt (LM) algorithm, with the 
Sigmoid function used as the transfer function. The 
optimal number of neurons in the hidden layer was 
selected based on the best performance, 
measured by the R² value and root mean squared 
error (RMSE). 

The construction of an ANN model involves 
adjusting weights and biases. The output of a 
neuron is computed by summing the weighted 
inputs and adding a bias, which is then processed 
through a transfer function. 

No 
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𝑓𝑛 = 𝑓[(∑ 𝑤𝑖
𝑘
𝑖=1 𝑥𝑖) + 𝑏] (8) 

Where k, wi, b, and f(n) are the number of 

elements in the input vector xi, the interconnection 

weight, the bias for the neuron (n), and the neuron 

output, respectively. ANNs feature various network 

architectures, training algorithms, transfer 

functions, and optimal neuron counts [70]. The 

ANN model employed in this study utilizes a feed-

forward neural network architecture based on the 

backpropagation learning principle. For training 

nonlinear functions, such as those encountered in 

many chemical processes, the tangent sigmoid 

transfer function (tansig) is commonly used due to 

its effectiveness. The general formula for the tansig 

transfer function is given as follows: 

𝑓(𝑥) =
2

1 + 𝑒−2𝑥
− 1 

Additionally, following the recommendations of 
Hojjat et al. [71], input parameters were normalized 
by dividing each column by its maximum value, 
ensuring a range of zero to one (0–1). The study 
utilized these normalized parameters as inputs for 
modelling the artificial neural network.  

The structure of the network is illustrated in 

Figure 3. 

 

 

Figure 3. Sample network architecture for ANN modeling [27] 

 

The flowchart in figure 3 describes the steps of the ANN modelling  
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Figure 4. ANN Modelling Flowchart 

3.2.3. Performance Metrics of Surrogate Models 

The predicted power generation from RSM and 
ANN models were assessed and compared in 
terms of statistical performance metricsincluding 
coefficient of determination (R2), adjusted, standard 
deviation and root mean squared error (RMSE). 
The formulas for these metrics are given: 

𝑅2 =
∑ (𝑥𝑎,𝑖−𝑥𝑝,𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑝,𝑖−𝑥𝑎,𝑎𝑣𝑒)
2𝑛

𝑖=1

 (11) 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑅2 = 1 − [(1 − 𝑅2) ×
𝑛−1

𝑛−𝑘−1
] (12) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑝,𝑖 − 𝑥𝑎,𝑖)

2𝑛
𝑖=1  (13) 

Where n is the number of experimental runs 
xp,iis the estimated values, xa,iis the experimental 
values, xa,ave is the average experimental values, k 
is the number of input variables 

3.6.4. Power Generation Optimization 

Optimization was carried out using both 
Response Surface Methodology (RSM) and 
artificial neural network coupled Genetic Algorithm 
(ANN-GA). Initially, a quadratic model was 
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developed through RSM. This model was 
optimized using RSM itself, and then it was 
exported to MATLAB, where GA was applied for 
further optimization. This process yielded two 
distinct optimization outcomes—one from RSM and 
the other from GA. These results were 
subsequently compared, focusing on the values of 
the independent variables and the resulting 
optimized power generated. 

4. RESULTS 

The results for power generationfrom the surro-
gate models conducted is presented in this section 
which model result results from RSM and ANN, 
and optimisation results from RSM and ANN-GA. 

4.1. Results for RSM analyses 

The results of the RSM modelling are 
presented and discussed in this section, 
encompassing Table 1, Table 2, and Table 3. 
These tables display both the actual output from 

the process simulation and the corresponding 
predicted output responses from RSM, considering 
input variables such as working fluid flowrate, 
working fluid outlet pressure and turbine outlet 
pressure. Among several regression models 
tested, the quadratic model demonstrated the 
highest fit to the actual data for as shown in Table 
1 and was selected for its superior prediction 
accuracy. Equation 20 is the quadratic model 
generated by RSM for the power generation. 

Table 1. Error data for RSM model analyses 

Source P value R2 Adjusted R2  

Linear <0.0001 0.8850 0.8145  

2FI 0.1381 0.9117 0.7587  

Quadratic  0.0001 0.9923 0.9462 Suggested 

Cubic 
 

1.0000 
 

Aliased 

Power Generation (kWh)= 475.8 +  144.374 𝐴 +  243.491𝐵 − 76.9425𝐶 + 

+ 81.0775𝐴𝐵 − 26.025𝐴𝐶 + −3.99𝐵𝐶 +  0.15625𝐴2 − 96.3788𝐵2  +  11.2188𝐶2 

Where variables A, B, C represent working fluid 
flowrate (kg/s), working fluid inlet pressure (bar) 
and turbine outlet pressure (bar) respectively.This 
equation can be utilized to predict the response for 
given levels of each factor. To achieve accurate 
predictions, the levels must be specified in the 
original units of each factor, both for the input 
parameters and the response variables. To assess 
the significance of the model coefficients, Analysis 
of Variance (ANOVA) was conducted. Table 2 and 
Table 3 summarize the ANOVA results and fit 
metrics for the power generation output responses. 
These tables include degrees of freedom, mean 
square values, F-values, and p-values. In Table 5, 
the p-values are smaller than 0.0001, and the high 

F-values indicate that the models are statistically 
significant. 

The RSM model's predictions closely matched 
the actual simulation data, as shown in Table 8. To 
evaluate the statistical significance of the model, an 
Analysis of Variance (ANOVA) was conducted on 
equation 14, as detailed in Table 2. The results 
indicated that the model was statistically significant 
(p < 0.0007), with a non-significant lack of fit. The 
adjusted R² value (0.9923) and predicted R² value 
(0.9462) further confirmed the model's robustness, 
suggesting that the key factors influencing power 
generated—such as working fluid flowrate (kg/s), 
working fluid inlet pressure (bar) and turbine outlet 
pressure (bar)—were effectively captured by the 
model.  

 

Table 2. ANOVA 

Source Sum of Squares df Mean Square F-value p-value   

Model 7.57E+05 9 84093.51 230.56 < 0.0001 significant 

A-Working Fluid Flowrate 1.67E+05 1 1.67E+05 457.19 < 0.0001   

B-Working Fluid Outlet Pressure 4.74E+05 1 4.74E+05 1300.42 < 0.0001   

C-Turbine Outlet Pressure 47361.19 1 47361.19 129.85 < 0.0001   

AB 26294.24 1 26294.24 72.09 < 0.0001   

AC 2709.2 1 2709.2 7.43 0.0295   

BC 63.68 1 63.68 0.1746 0.6886   

A² 0.1028 1 0.1028 0.0003 0.9871   

B² 39111 1 39111 107.23 < 0.0001   

C² 529.94 1 529.94 1.45 0.2672   

Residual 2553.12 7 364.73       

Lack of Fit 2553.12 3 851.04       

Pure Error 0 4 0       

Cor Total 7.59E+05 16         
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Figure 5 shows the relationship between the actual and predicted results from the RSM model 

 

Figure 5. Parity plot of Actual vs Predicted values of power generated from RSM model 

 

The parity plot in figure 4 shows how the data 
points from the actual (process simulation datal) 
and predicted power generated clustered aroun the 
45o line. This figure demonstrate that the actual 
and predicted output responses closely align 
around the 45-degree line for all indicating strong 
regression and agreement between the two 
datasets. Thus, there exists an acceptable level of 
agreement between the actual process simulation 
data and the predicted responses from the RSM 
models. 

4.2. Interaction Response of Input Parameters on 
Power Generated using 3D Plots 

Figure 6 illustrates the 3D response surface 
plot depicting the interaction between independent 
variables and power production while figure 7 
shows the contour plots for the power production 
from the RSM modelling. These plots visually 
represent how changes in the independent 
variables (such working fluid flowrate (kg/s), 
working fluid inlet pressure (bar) and turbine outlet 
pressure (bar)) influence the power production 
providing insights into their mutual interactions.  

Both the 3D surface plots in figure 6a-c and the 
contour plots in Figure 7a-c are used to make 

analysis of the interactions between the 
independent variables and the response. 

Figure 6a and Figure 7a shows the interactive 
effect of working fluid flowrate and working fluid 
outlet pressure on the power generated. As can be 
observed, increasing the working fluid flowrate 
increases the power generated by the binary ORC 
system at higher outlet pressures of the working 
fluid. In other words both the flowrate and outlet 
pressures of the working fluid have positive effect 
on the power generated as their increase results to 
higher power generated. 

Figure 6b and Figure 7b shows the interactive 

effect of working fluid flowrate and turbine outlet 

pressure on the power generated. It can be 

observed that at lower turbine outlet pressures, 

increasing the flowrate of the working fluid 

increases the power generated by the turbine. 

However, when the flowrate of the working fluid is 

kept constant, the power generated by the turbine 

decreases as the turbine outlet pressure increases. 

Figure 6c and Figure 7c shows the interactive 
effect of working fluid outlet pressure and turbine 
outlet pressure on the power generated. It is seen 
that at lower turbine outlet pressures, increasing 
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the outlet pressure of the working fluid increases 
the power generated by the turbine. However, 
when the outlet pressure of the working fluid is kept 
constant, the power generated by the turbine 
decreases as the turbine outlet pressure increases. 

a) 

b) 

c) 

Figure 6. 3D response surface plots for power 
production from RSM 

a)  

b) 

c) 

Figure 7. Contour plots for power production from 
RSM 
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4.3. Results for ANN Modelling 

The ANN neural network model was employed 

to establish the relationship between the input 

factors and the output response. The selection of 

the optimal neural network for the ANN analysis 

was based on the performance of various transfer 

functions, training algorithms, network 

architectures, and the optimal number of neurons. 

Multiple training sessions were conducted, and the 

best-performing results were selected to represent 

the model. The performance of these factors was 

evaluated using metrics such as R² values, mean 

squared error (MSE), root mean squared error 

(RMSE), mean absolute error (MAE), and mean 

absolute percentage error (MAPE). A higher R² 

value, along with lower MSE, RMSE, MAE, and 

MAPE values, indicates better predictive accuracy 

in relation to the model's factors. The R-value 

corresponding to the selected trained ANN model 

is presented in Figure 6. 

 

Figure 8. Regressionplot for the training in ANN 

 

Figure 8 shows the Regression values 

corresponding to the ANN training performed. The 

Overall R values for the ANN model was 0.9943. It 

is seen that ANN gave notably high R values which 

indicate very good predictions for the power 

generated. 

Table 4 shows the values predicted by RSM 

and ANN models for each of the input variables 

and actual output data. Table 4 shows that there is 

a high correlation between the actual and predicted 

results for the RSM and the ANN models.  
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Table 4. Actual and predicted results for power generated corresponding to RSM and ANN modelling. 

Run 
Working Fluid 

Flowrate,  
kg/s 

Working Fluid 
Outlet Pressure 

bar 

Turbine Outlet 
Pressure,  

bar 

Actual 
Power 

Generated 
kW 

RSM Predicted 
Power 

Generated, kW 

ANN Predicted 
Power Generated, 

kW 

1 9 11 1.7 475.8 475.8 475.9489 

2 6 19 1.7 415.2 397.62 415.1577 

3 9 11 1.7 475.8 475.8 475.9489 

4 12 11 1.2 753 734.52 753.0379 

5 9 19 1.2 714.7 715.06 714.7729 

6 12 3 1.7 181.8 199.38 181.8843 

7 6 11 1.2 376.5 393.72 376.4783 

8 9 11 1.7 475.8 475.8 475.9489 

9 9 3 2.2 74.56 74.2 94.31542 

10 9 11 1.7 475.8 475.8 475.9489 

11 6 3 1.7 90.91 72.79 93.33428 

12 6 11 2.2 273.4 291.88 273.4133 

13 9 19 2.2 554.1 553.2 554.146 

14 9 11 1.7 475.8 475.8 475.9489 

15 12 11 2.2 545.8 528.58 505.9555 

16 9 3 1.2 219.2 220.1 132.1279 

17 12 19 1.7 830.4 848.52 829.374 

 

Table 5 shows the comparison of performance 
metrics for the RSM and the ANN predictions. 

Table 5: Performance metrics for RSM and ANN 
Predictions 

 
RSM ANN 

MSE 150.1611 562.7336 

RMSE 12.2540 23.7220 

MAE 8.5482 8.8932 

MAPE 0.0318 0.0450 

R2 0.9966 0.9886 

From Table 5, it is seen that both RSM and 
ANN models gave realistic predictions of the 
actual/experimental data for the error metrics 

considered. In terms of R2 values, both RSM and 
ANN gave predictions higher than 0.9 which 
indicates very good predictions of the test data. 
The R2 values for RSM was 0.9966, while that for 
ANN was 0.9886. Thus, relative to R2 values the 
RSM performed better than the ANN. The MSE 
and MAE of RSM model were 150.1611 and 
12.2540 respectively while the MSE and MAE for 
ANN were 562.7336 and 23.722respectively. The 
MAPE of RSM and ANN models were 3.18% and 
4.5% respectively it is evident that the RSM 
performed better than the ANN model. 

Additionally, the model performance in this 
study were compared with performance of scholars 
who conducted modelling on geothermal systems 
as summarized in Table 6. 

 

Table 6.  Comparison of model performance of study with results from literature 

Area of Study Target Parameter Model Used R2 RMSE Reference 

Binary Geothermal Power 
Plant 

Power Generated ANN 0.999 0.272 [27] 

Double Flash Cycle 
Geothermal Turbine to 

Net Power Generated 
Multiple Linear 

Regression 
- 0.9997 [72] 

Geothermal Binary ORC 
Systems 

System Performance Taguchi model 0.941 4.29 [73] 

Geothermal ORC system Power Generated ANN 0.9986 51.2 [74] 

Geothermal ORC system Turbine performance ANN 0.9989 0.0009 [25] 

Enhanced Geothermal 
systems 

Geothermal production 
temperature 

ANN 0.998 0.067 [75] 

Geothermal Binary ORC 
system 

Power Generated 
ANN 0.9886 23.7220 This  

Study RSM 0.9966 12.2540 
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Table 6 shows the performance of various 
studies on geothermal systems using various 
modelling techniques in describing the relationship 
between the input parameters and the target 
output. It can be observed that from literature 
several models have been successfully utilised for 
modelling geothermal systems with excellent 
performance. Moreso, it is seen that the 
performance of the ANN and RSM model realised 
in this study are close to the performances seen in 
literature in several studies conducted on 
geothermal systems especially in the area of 
geothermal binary ORC systems for power 
generation. 

4.4. Optimisation of Power Generated 

Table 7 gives the summary of the optimisation 
results of power generated corresponding to RSM 
and ANN-GA optimisations performed. 

Table 7. Optimisation results 

Parameter RSM ANN-GA 
Hysys 
Check 

Working fluid flowrate,  
MMscfd 

11.8 12 12 

Working fluid outlet  
pressure, bar 

18.47 19 19 

Turbine outlet pressure 1.2 1.2 1.2 

Power generated, kW 940.78 958.48 952.9 

Power Generated from 
Hysys at optimal factors, 
kW 

927.2 952.9 - 

Percentage error 1.46 0.59 - 

 

Table 7 provides a comparative analysis of the 
optimization results obtained using two distinct 
methodologies: Response Surface Methodology 
(RSM) and the coupled Artificial Neural Network-
Genetic Algorithm (ANN-GA). These optimization 
techniques adopt fundamentally different 
approaches, which naturally result in variations in 
their outcomes. To evaluate their performance, an 
optimization check was conducted in Aspen 
HYSYS to determine the optimal input factors 
based on sensitivity analysis trends. The optimal 
input variables predicted by both methods were 
subsequently inputted into HYSYS to verify the 
corresponding power output. 

From the results presented in the table, it is 
evident that ANN-GA demonstrated superior 
optimization capabilities. The method accurately 
predicted the ranges of input variables—working 
fluid flowrate, working fluid outlet pressure, and 
turbine outlet pressure—that yielded the optimal 
power output. The optimal values identified by 
ANN-GA were consistent with those determined 
directly by HYSYS, signifying excellent alignment 
and optimization performance. This consistency 
highlights the robustness and reliability of ANN-GA 

in predicting the key input parameters required for 
maximizing power generation. 

In contrast, RSM struggled to accurately predict 
the optimal input values. Although RSM provided a 
set of predicted optimal factors, these values 
deviated from the actual optimal values determined 
by HYSYS. To further assess the optimization 
performance of both methodologies, their predicted 
input values were tested in HYSYS, and the 
corresponding power outputs were analyzed. ANN-
GA achieved a power output of 958.48 kW when its 
predicted values were inputted, closely matching 
the 952.9 kW output determined directly by 
HYSYS. This resulted in a percentage error of just 
0.59%, demonstrating the high accuracy of ANN-
GA not only in parameter prediction but also in 
achieving optimal power generation. 

On the other hand, the power output generated 
using the input factors predicted by RSM was 
927.2 kW when tested in HYSYS. This value 
significantly deviated from the 940.78 kW predicted 
by RSM itself, resulting in a higher percentage 
error of 1.46%. The discrepancy between RSM's 
predicted and actual performance highlights its 
limitations in identifying the precise input variables 
required for maximum power generation. Moreover, 
the power output achieved by RSM was 
considerably lower than the optimal power output 
obtained via ANN-GA, further emphasizing the 
comparative weakness of RSM as an optimization 
tool for this process. 

The analysis highlights the robustness and 
accuracy of the ANN-GA model, which not only 
closely aligned with HYSYS predictions but also 
consistently delivered power outputs that were 
nearly identical to the actual optimal values. Its 
integration of machine learning (via ANN) and 
evolutionary optimization (via GA) likely contributed 
to its superior performance by effectively capturing 
complex nonlinear relationships and exploring the 
solution space more comprehensively. ANN-GA 
significantly outperformed RSM in optimization 
performance. While RSM exhibited notable errors 
and limitations, ANN-GA proved to be a highly 
reliable and robust optimization technique, 
demonstrating its potential as a powerful tool for 
process optimization in scenarios where accuracy 
and efficiency are paramount. 

5. CONCLUSION 

Modelling and optimization of geothermal 
binary Organic Rankine Cycle (ORC) systems has 
been accomplished in this study, leveraging Aspen 
HYSYS process simulations with RSM and ANN 
models. Aspen HYSYS was utilized to model the 
process system and generate simulation data, 
which served as the foundation for developing 
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RSM and ANN models. The RSM and ANN models 
were designed using the Box-Behnken Design 
(BBD) for three factors: working fluid flowrate, 
working fluid outlet pressure, and turbine outlet 
pressure, while optimization was performed 
independently using RSM and ANN-GA. 

In terms of modelling, both RSM and ANN 
demonstrated excellent capabilities in capturing the 
nonlinear relationships between the input 
parameters and the system's power generation. 
The RSM model, however, outperformed ANN with 
a superior coefficient of determination (R²) of 
0.9966 compared to 0.9886 for ANN. Additionally, 
the RSM model achieved a lower root mean square 
error (RMSE) of 12.254 compared to ANN's RMSE 
of 23.722, highlighting its superior predictive 
accuracy and robustness in modeling the system’s 
behavior. 

When applied to optimization, the ANN-GA 
demonstrated better performance than RSM, 
achieving optimal power generation values with a 
lower percentage error when validated against 
Aspen HYSYS. The power output predicted by 
ANN-GA was 958.48 kW, exhibiting a minimal error 
deviation of 0.59% compared to the Hysys-
validated output. In contrast, RSM gave an optimal 
power output of 940.78 kW which gave a 
percentage error deviation of 1.46%. when 
validated in HYSYS. These results highlights the 
superior optimization capabilities of ANN-GA, 
which effectively integrated machine learning and 
evolutionary algorithms to achieve higher accuracy 
in navigating the solution space than RSM. 
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IZVOD 

MODELIRANJE I OPTIMIZACIJA GEOTERMALNIH BINARNIH ORC SISTEMA 
KORIŠĆENJEM METODOLOGIJE POVRŠINE ODGOVORA I VEŠTAČKIH 
NEURONSKIH MREŽA 

Ova studija se fokusira na modeliranje i optimizaciju geotermalnih binarnih sistema Organic 
Rankine Cicle (ORC) kako bi se poboljšala proizvodnja energije iz geotermalnih sistema koji 
koriste vodu kao geofluid. Aspen HISIS, koji koristi Peng-Robinsonov paket svojstava, korišćen je 
za simulaciju procesa, generišući kritične podatke procesa za naknadno modeliranje i optimizaciju. 
Metodologija površine odgovora (RSM) i veštačka neuronska mreža (ANN) su korišćene za 
modeliranje odnosa između ulaznih faktora i izlaznog odgovora, koristeći Bok-Behnken dizajn 
(BBD) za tri ključne ulazne varijable: brzinu protoka radnog fluida, izlazni pritisak radnog fluida i 
izlazni pritisak turbine. I RSM i ANN su pokazali snažne prediktivne sposobnosti, pri čemu je RSM 
postigao R2 vrednost od 0,9966 i RMSE od 12,254, dok je ANN postigao R2 vrednost od 0,9886 i 
RMSE od 23,722, što ukazuje da je RSM neznatno nadmašio ANNccura u smislu ANNccura. 
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Optimizacija ORC sistema je sprovedena korišćenjem RSM i ANN u kombinaciji sa genetskim 
algoritmom (ANN-GA), sa ciljem određivanja optimalnih vrednosti za ulazne i izlazne parametre. 
Rezultati optimizacije ANN-GA su potvrđeni korišćenjem Aspen HISIS i pokazali su superiorne 
performanse u odnosu na RSM. ANN-GA je predvideo optimalne vrednosti protoka radnog fluida, 
izlaznog pritiska radnog fluida i izlaznog pritiska iz turbine od 12 kg/s, 19 bara i 1,2 bara, 
respektivno, što je savršeno odgovaralo rezultatima validacije Aspen HISIS. Ova optimizacija je 
dala izlaznu snagu od 958,48 kV, koja je bila usko usklađena sa izlazom validacije Aspen HISIS 
od 952,9 kV, što odražava minimalnu procentualnu grešku od 0,59%. Nasuprot tome, RSM je 
predvideo blago odstupanje optimalnih vrednosti od 11,8 kg/s, 18,47 bara i 1,2 bara, sa 
odgovarajućom izlaznom snagom od 940,78 kV. Kada je potvrđen sa HISIS-om, RSM-predviđena 
izlazna snaga je bila 927,2 kV, što je rezultiralo većom greškom u procentima od 1,46%, čime je 
lošiji učinak u odnosu na ANN-GA. Studija naglašava komparativne snage RSM-a i ANN-GA, 
pokazujući da, dok se RSM ističe u preciznom modeliranju odnosa i interakcija između ulaznih 
faktora i izlaznih odgovora, ANN-GA okvir pokazuje znatno veću sposobnost u navigaciji složenim 
nelinearnim optimizacijskim pejzažima. Ovo naglašava efikasnost integracije modela mašinskog 
učenja sa metaheurističkim algoritmima za poboljšane performanse optimizacije. Nalazi doprinose 
unapređenju metodologije za optimizaciju geotermalnih ORC sistema i nude robustan okvir za 
poboljšanje efikasnosti proizvodnje energije u primenama geotermalne energije. 
Ključne reči: Geotermalna energija, RSM, ANN, genetski algoritam, Hisis simulacija, Proizvodnja 
električne energije, binarni ORC sistemi 
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