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ABSTRACT

This study focuses on the modeling and optimization of geothermal binary Organic Rankine Cycle
(ORC) systems to enhance power generation from geothermal systems using water as geofluid.
Aspen HYSYS, utilizing the Peng-Robinson property package, was used to simulate the process,
generating critical process data for subsequent modeling and optimization. Response Surface
Methodology (RSM) and an Artificial Neural Network (ANN) were employed to model the
relationships between input factors and output response, utilizing a Box-Behnken Design (BBD)
for three key input variables: working fluid flow rate, working fluid outlet pressure, and turbine
outlet pressure. Both RSM and ANN demonstrated strong predictive capabilities, with RSM
achieving an R2 value of 0.9966 and an RMSE of 12.254, while ANN achieved an R2 value of
0.9886 and an RMSE of 23.722, indicating that RSM marginally outperformed ANN in terms of
modelling accuracy. Optimization of the ORC system was conducted using RSM and ANN
coupled with a Genetic Algorithm (ANN-GA), aimed at determining the optimal values for input and
output parameters. The ANN-GA optimization results were validated using Aspen HYSYS and
showed superior performance over RSM. ANN-GA predicted optimal values of working fluid flow
rate, working fluid outlet pressure, and turbine outlet pressure as 12 kg/s, 19 bar, and 1.2 bar,
respectively, which perfectly matched the Aspen HYSYS validation results. This optimization
yielded a power output of 958.48 kW, which closely aligned with the Aspen HYSYS validation
output of 952.9 kW, reflecting a minimal percentage error of 0.59%. Conversely, RSM predicted
slightly deviated optimal values of 11.8 kg/s, 18.47 bar, and 1.2 bar, with a corresponding power
output of 940.78 kW. When validated with HYSYS, the RSM-predicted output was 927.2 kW,
resulting in a higher percentage error of 1.46%, thereby underperforming relative to ANN-GA. The
study highlights the comparative strengths of RSM and ANN-GA, demonstrating that while RSM
excels in accurately modeling the relationship and interactions between input factors and output
responses, the ANN-GA framework exhibits a significantly higher capability in navigating complex
nonlinear optimization landscapes. This highlights the effectiveness of integrating machine
learning models with meta-heuristic algorithms for enhanced optimization performance. The
findings contribute to advancing the methodology for optimizing geothermal ORC systems and
offer a robust framework for improving power generation efficiency in geothermal energy
applications.

Keywords: Geothermal energy, RSM, ANN, genetic algorithm, Hysys simulation,
generation, binary ORC systems
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1. INTRODUCTION

The global reduction of fossil fuel resources
and the need to mitigate carbon emissions are
critical challenges faced worldwide. Despite these,
energy demand continues to rise, necessitating
alternative energy solutions to meet global
requirements. Geothermal energy is a promising
solution due to its abundance, eco-friendliness, and
renewable nature [1, 2].
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As a clean energy resource, geothermal energy
offers numerous advantages over other renewable
sources, including its higher  reliability,
sustainability, and capacity factor. It is less affected
by climatic conditions, making it a reliable source of
energy, particularly in regions with geothermal
reserves.

Geothermal energy is derived from the Earth's
subsurface, with temperatures ranging from 50°C
to 350°C [3]. Geothermal resources can be
classified into four main groups: hydrothermal,
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magma, hot-dry rock, and geo-pressured [4].
Among these, hydrothermal resources are the most
commonly utilized, existing in either vapor-
dominated or liquid-dominated forms, depending
on geological conditions. Vapor-dominated
systems typically exhibit temperatures between
250°C and 300°C and produce superheated (dry)
steam [5]. In contrast, liquid-dominated systems
can generate wet steam or water, making them
versatile in energy production [5, 6].

The utilization of geothermal energy for power
generation is divided into two main categories:
power generation systems and reinjection facilities
(or alternative solutions for non-condensable
gases) [7]. The former includes the production well
and closed power cycle, while the latter deals with
compressor trains and reinjection wells [8].
Geothermal power plants are a key method for
harnessing geothermal energy and fall into three
main types: dry-steam, flash, and binary [9]. Each
technology is suitable for different temperature
ranges. Dry-steam and flash systems are used for
high-temperature sources (above 180°C), while
binary plants are employed for lower temperature
resources (below 180°C).

Globally, dry-steam, flash, and binary
technologies account for approximately 26%, 58%,
and 15% of the market, respectively, with emerging
technologies making up about 1% of facilities [1].
However, binary plants are becoming increasingly
popular due to their flexibility in utilizing low-to-
medium-temperature resources. In fact, over 270
binary power plants are currently operational
worldwide [10].

In a dry-steam geothermal system, high-
temperature and high-pressure steam is directly
extracted from underground and expanded through
a steam turbine to drive an electricity generator [8].
Wet-steam geothermal systems, on the other hand,
involve separating the wet steam into saturated
steam and geothermal water ([11]. The saturated
steam is expanded through a turbine to generate
electricity, while the geothermal water can be
flashed at lower pressure to produce additional
steam, which is also used for power generation.
This configuration allows for efficient use of
geothermal resources, particularly in areas where
wet-steam conditions prevalil.

While the traditional Rankine cycle using water
as a working fluid is widely used for power
generation, it is not always suitable for low- and
medium-temperature geothermal resources. The
boiling point of water is often too high for these
resources, leading to inefficiencies [10].
Additionally, using steam cycles can result in
issues such as turbine blade erosion, condensation

during expansion, and the need for superheating,
which complicates turbine design and increases
costs. As a result, alternative cycles like the
organic Rankine cycle (ORC), supercritical Rankine
cycle, Kalina cycle, and flash cycle have been
proposed for low-temperature heat conversion.

The ORC is particularly well-suited for low-to-
medium-temperature geothermal applications due
to its use of organic working fluids with lower
boiling points than water. These organic fluids
allow the ORC to utilize a wide range of heat
sources [10]. The cycle operates similarly to the
traditional Rankine cycle, where the working fluid is
heated to boiling, and the resulting vapor drives a
turbine that generates electricity. Afterward, the
vapor is condensed back into a liquid and
recirculated in the system.

Binary cycle technology, which includes ORC
and Kalina cycles, is often used for liquid
geothermal sources or medium-to-low-temperature
resources (100-170°C) [1]. One of the key
advantages of binary systems is their enclosed
geothermal  fluid loop, which prevents
environmental pollution by reinjecting potentially
harmful geothermal fluids back underground. In
ORC-based binary geothermal power plants, the
organic working fluids ensure system efficiency and
environmental safety [12].

Despite the benefits, creating an efficient binary
ORC system remains a significant challenge for the
geothermal industry [13]. These systems require
substantial capital investment, making proper
planning and design essential. Research and
development efforts focus on field tests, numerical
modeling, simulation, and optimization to enhance
system performance [1].

A successful binary ORC system must
generate sufficient heat to produce electricity and
maintain a production life of at least 30 years.
Understanding and optimizing key parameters,
including fluid properties, cycle efficiency, and
resource characteristics, is crucial to improving
system performance. By systematically testing
various parameter combinations, engineers can
design more efficient and cost-effective geothermal
systems, thereby contributing to the global energy
transition [14].

In optimization studies and experimental
setups, process Vvariables often depend on or
interact with one another. Understanding the
output-input  relationships requires a deep
comprehension of these interactions. Evaluating all
possible combinations of parameters can be time-
consuming, especially when running complex
numerical simulations [13]. To address this
challenge, numerical simulations are often used to
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study the effects of individual parameters, which
are then used to design surrogate models. These
models help streamline system development,
reducing the time required for optimization while
maintaining accuracy [14].

In the design of thermo-power generation
blocks for binary Organic Rankine Cycle (ORC)
systems using H20 as the geothermal working
fluid, wvarious factors significantly influence
performance, including cycle layout parameters,
design specifications, and the variability of heat
source and heat sink conditions [14]. Optimization
of such systems is essential for maximizing
efficiency and output, and the Response Surface
Methodology (RSM) serves as a powerful and
versatile tool for this purpose [15, 16]. RSM is a
statistical and mathematical approach designed for
constructing experimental models, analyzing
variations in input factors, and generating a
response surface that relates these variables to the
desired output ([17]. By employing carefully
structured experimental designs, such as Box-
Behnken or Central Composite Designs, RSM
facilitates the exploration of complex parameter
spaces with high efficiency. This enables the
identification of relationships between multiple input
variables and the response variable, thereby
allowing for simultaneous analysis and optimization
[18].

The response surface generated by RSM
provides a detailed map of how changes in input
variables affect the system's output, making it a
reliable method for identifying optimal ranges for
key input parameters. This capability is particularly
valuable in geothermal systems, where factors
such as turbine inlet conditions, working fluid
properties, and thermal efficiency must be fine-
tuned to achieve maximum power output. RSM has
been successfully applied in various studies to
optimize and predict performance in ORC systems
[18]. Its applications include turbine design
optimization, where the geometry and operating
conditions are adjusted for peak performance, and
determining input parameters for maximizing
thermal efficiency and output in geothermal power
cycles [15]. By providing a systematic and
statistically robust approach, RSM reduces the time
and computational effort required for optimization
while ensuring reliable and accurate predictions
[17, 19].

Many scholars have investigated the use of
RSM for modelling and optimisation of geothermal
systems. Assareh et al. [18] employed RSM with
Design-Expert software to optimize a geothermal-
based energy system producing liquid hydrogen,
cooling, hot water, and power. Using R123 as the
working fluid, optimal exergy efficiency (43.91%)

and cost rate (45.12 $/h) were determined. RSM
effectively modeled and analyzed the impact of
design variables, identifying Regina, Canada, as
the optimal location based on performance and
environmental benefits. Al Jubori et al. [20]
employed RSM as part of a multi-objective
optimization methodology integrating mean-line
design, 3D CFD analysis, and ORC modeling for a
small-scale radial-inflow turbine. Blade geometry
was optimized using 20 design points, achieving
13.95% and 17.38% improvements in turbine and
cycle thermal efficiencies, respectively. Kazemian
et al. [21] utilized RSM with the central composite
design to optimize input parameters for a combined
GT/ORC/ARS system, demonstrating its superior
economic performance over GT/ORC/GSHP
systems. Sensitivity analysis further evaluated
economic parameters like payback period and
NPV. Azizi et al. [22] integrated RSM with grey wolf
optimization for a geothermal-natural gas
cogeneration system. Optimization achieved 45.2%
exergy efficiency and a unit product cost of 3.82
$/GJ, highlighting RSM's role in enhancing
performance and profitability.

In recent years, machine learning methods
have revolutionized the optimization and
performance enhancement of Organic Rankine
Cycle (ORC)-based plants. Among these methods,
Artificial  Neural  Networks  (ANNs)  have
demonstrated exceptional capabilities in predicting,
classifying, and approximating functions,
particularly in handling complex and nonlinear
relationships [23]. This has made ANNs an
indispensable tool for solving real-world challenges
across diverse applications, including shallow
geothermal systems. ANNs, particularly those
implementing backpropagation algorithms, have
been pivotal in advancing geothermal energy
operations, enhancing efficiency and sustainability
[23]. The integration of machine learning
techniques in ORC systems began with their
application to predict and optimize system
performance [24].

Tugcu and Arslan [25] applied a two-stage
ANN model to optimize a geothermal absorption
refrigeration system, analyzing 3660 designs with
energy, exergy, and NPV metrics. ANN trained with
backpropagation algorithms achieved error rates as
low as 0.07%, effectively predicting and optimizing
COP and exergy efficiency. Ziviani et al. [26]
developed an ANN to predict performance in ORC
experiments using scroll expanders, achieving high
accuracy for turbine parameters like inlet pressure
and rotation speed. Yilmaz and Koyuncu [27]
modelled and optimized the Afyon Geothermal
Power Plant using a multi-layer ANN with a genetic
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algorithm, achieving energy and exergy efficiencies
of 10.4% and 29.7%. The optimized payback
period and exergy cost were calculated as 2.87
years and $0.0176/kWh, respectively. Cetin et al.
[28] modeled a binary geothermal power plant
(GPP) with  ANN to optimize thermodynamic
performance. By analyzing reference point data,
the model estimated power output and exergy
efficiency, determining the best parameter
configurations for maximum performance. Yilmaz
and Sen [29] utilized an ANN-based Genetic
Algorithm (GA) to optimize a geothermal and solar-
assisted energy and hydrogen production system
under varying climatic and operational conditions.
The ANN-GA model predicted power output and
hydrogen production, achieving a cost of hydrogen
at $1.576/kg and a unit electricity cost of
$0.027/kWh.

Chanthamaly et al. [30] applied ANN
classification algorithms to predict maintenance
schedules for geothermal wells, achieving 99.83%
accuracy using K-means clustering. The ANN-
supported predictive maintenance ensured system
reliability and minimized power loss. Xue et al. [23]
proposed an ANN-Differential Evolution (DE)
optimization framework for a three-horizontal-well
EGS, achieving a low LCOE of $0.0376/kWh, with
ANN models demonstrating high predictive
accuracy (R2 > 0.996) and significant time savings
(36,000x faster than simulations). Hsieh et al. [31]
trained an ANN using data from a 3D axial turbo-
expander model to predict key cycle parameters
under off-design conditions, enabling long-term
performance analysis for geothermal fields. Zhou
et al. [32] Introduced a hybrid framework combining
ANN with mathematical programming to optimize
ORCs, achieving high classification (99%
accuracy) and regression (mean errors <1%)
performance. The mixed-integer linear
programming (MILP) approach significantly
reduced computational time while optimizing net
exergy to 28.66 MW.

Chitgar et al. [33] used ANN-GA for multi-
objective  optimization of geothermal-based
desalination systems, identifying configurations that
improved power generation by 150% and water
production by 60%, while evaluating optimal
working fluid combinations under different
temperatures. Shakibi et al. [34] evaluated ANN
algorithms for optimizing geothermal-hydrogen
systems in Australia, achieving a 46.27% exergy
efficiency, 1.84-year payback, and high accuracy
(mean absolute error: 2.28x107'*) in predicting
system  performance under  multi-objective
scenarios. Ling et al. [35] developed an ANN-
based prediction and optimization model for a
binary cycle geothermal power plant. The model

controlled working fluid circulation rates, optimizing
net power production and reducing costs,
outperforming traditional physics-based
approaches. Farajollahi et al. [36] combined ANN
with response surface methodology (RSM) for
hybrid power plant optimization, using ANN to map
independent variables to thermal efficiency and
cost. The GA-based optimization identified
parameters achieving a thermal efficiency of
30.47% and a levelized product cost of $13.04/GJ.

2. LITERATURE REVIEW

2.1. ORC Cycle Working Fluids

The performance of an ORC system is highly
dependent on the choice of working fluid, making
this selection a critical factor in system design and
efficiency. Selecting the most suitable organic
working fluid involves considering a variety of
parameters, including thermodynamic properties,

environmental impact, safety concerns, and
economic factors. These criteria collectively
influence the overall efficiency, cost, and

sustainability of the ORC system [1].

From an environmental and safety perspective,
working fluids must comply with strict regulations
related to Global Warming Potential (GWP) and
Ozone Depletion Potential (ODP). Fluids used in
ORC systems should have a GWP below 150 and
exhibit no ODP to minimize environmental harm, in
line with global climate targets and environmental
protection efforts [33]. Furthermore, the working
fluids should also possess favourable safety
characteristics, such as low flammability and
toxicity. The careful selection of non-hazardous
fluids helps to reduce operational risks and ensures
compliance with safety regulations in industrial
settings [37].

When choosing a working fluid, other critical
factors include thermodynamic properties that
directly affect the system's efficiency. Fluids with
low specific volumes are preferred because they
reduce the size and cost of key components such
as condensers [38, 39]. Additionally, fluids should
exhibit favourable liquid-specific heat, viscosity,
and thermal stability, which play essential roles in
efficient heat transfer and long-term operation.
High latent heat and density are also important as
they enhance output power and ensure better
performance, particularly in combined cycle
applications [12, 13]. The molecular weight of the
fluid should be compatible with the turbine’s
design, and the fluid must be stable under the
operational temperatures and pressures, avoiding
issues like material degradation or chemical
breakdown. Fluids must also be non-corrosive and
compatible with turbine materials and lubricating
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oils to ensure system
maintenance.

Saturation pressure is another important
consideration, as higher pressures (typically >100
kPa) are required to prevent air or gas infiltration,
which could reduce system efficiency [39]. At the
same time, fluids with moderate heat exchanger
pressures are preferred because they allow for
safer and more manageable system designs.
Overall, the selection of a working fluid that
balances these thermodynamic and material
compatibility properties is essential for optimizing
both performance and cost [40].

Working fluids can be categorized into three
main types based on the slope of their
temperature-entropy (T-S) saturation curve during
the expansion process: wet fluids, dry fluids, and
isentropic fluids. Wet fluids, such as water, exhibit
a negative slope, which means that during
expansion, condensation occurs, leading to two-
phase mixtures of liquid and vapour [3]. This can
cause erosion in turbines due to the presence of
liquid droplets, making wet fluids less desirable for
ORC systems. Dry fluids, including hydrocarbon
gases such as propane, butane, pentane, and
hexane, exhibit a positive slope, meaning that they
remain in a superheated vapor state during
expansion, avoiding condensation and preventing
turbine erosion [41]. Isentropic fluids, such as
toluene and R245fa, exhibit a vertical slope and
maintain an ideal balance during expansion [1].
However, their high GWP has made them less
favourable for use in ORC systems due to
environmental concerns.

Historically, water has been widely used as a
working fluid in large-scale Rankine cycles,
especially in high-temperature, fossil fuel-fired
plants. However, at lower temperatures, water
becomes less efficient due to its high specific heat
and latent heat of vaporization. This makes it
unsuitable for ORC applications, which often
operate at lower temperatures [42]. Organic fluids,
on the other hand, offer significant advantages over
water in ORC systems. They require less heat to
evaporate and eliminate the need for superheating,
making the cycle design simpler and more efficient
[43]. These organic fluids generally maintain a
superheated vapor state during isentropic
expansion through a turbine, preventing the
formation of two-phase mixtures and simplifying
turbine design [44]. As a result, ORC systems can
operate with less complexity, reduced risk of
turbine erosion, and lower maintenance costs.

One of the most significant advantages of using
dry working fluids in ORC systems is their ability to
maintain the superheated vapor state throughout
the expansion process [45]. This prevents the

longevity and minimal

formation of liquid droplets that could damage
turbine blades, making dry fluids more desirable
than wet fluids for ORC applications. Although
isentropic  fluids offer good thermodynamic
properties, their higher global warming potentials
(GWP) has led to a decline in their use, especially
as global efforts to reduce greenhouse gas
emissions intensify. Additionally, organic fluids
derived from petroleum exhibit lower evaporation
energy than water, requiring less heat for
vaporization [46, 47]. This makes them particularly
well-suited for ORC systems that operate at lower
temperatures, such as those used in geothermal,
waste heat recovery, and solar thermal applications
[48, 49].

As the need for sustainable and efficient
energy solutions grows, the choice of working fluids
in ORC systems is increasingly guided by both
environmental considerations and performance
metrics [50]. The focus is shifting towards fluids
that not only offer high efficiency but also align with
stricter environmental regulations. In response to
these challenges, research and development
efforts continue to focus on discovering new
working fluids with low GWP, zero ODP, and
optimal thermodynamic properties to improve the
overall sustainability and performance of ORC
systems.

2.2. Material challenges in Geothermal ORC
systems

Geothermal Organic Rankine Cycle (ORC)
systems operate under extreme conditions due to
the high temperature, pressure, and chemically
aggressive nature of geothermal fluids. These
factors lead to significant material degradation,
particularly corrosion in turbines, heat exchangers,
and pipelines. The selection of corrosion-resistant
materials is crucial to ensuring the long-term
durability and efficiency of ORC components. This
section explores the major corrosion mechanisms
affecting these components and highlights
materials that have demonstrated resilience in
harsh geothermal environments [51].

Corrosion in geothermal ORC systems arises
primarily due to the presence of dissolved gases
such as carbon dioxide (CO,) and hydrogen sulfide
(H,S), as well as chloride-rich geothermal brines.
General corrosion occurs when the entire surface
of a material undergoes uniform degradation due to
its reaction with geothermal fluids, often leading to
thinning and structural weakness over time. In
contrast, localized corrosion, such as pitting and
crevice corrosion, occurs in specific areas where
aggressive ions concentrate, leading to rapid
penetration and failure of the material [52]. Stress
corrosion cracking (SCC) is another prevalent
issue in geothermal environments, resulting from
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the combined effects of tensile stress and corrosive
fluid interactions, which can lead to sudden
material failure, particularly in turbine blades and
piping. Additionally, erosion-corrosion accelerates
material degradation due to the mechanical impact
of high-velocity geothermal fluids carrying
suspended particulates, leading to severe wear
and loss of material integrity [53].

2.2.1. Corrosion-Resistant Materials for
Geothermal ORC Systems

The selection of appropriate materials for
geothermal ORC systems is essential to combat
the detrimental effects of corrosion. Stainless
steels such as 316L, Duplex 2205, and Super
Duplex 2507 are commonly employed due to their
excellent resistance to chloride-induced pitting and
stress corrosion cracking. These materials contain
high levels of chromium, molybdenum, and
nitrogen, which enhance their protective passive
film formation, thereby improving their resistance in
aggressive geothermal environments [52]. Stress
corrosion cracking (SCC) is another prevalent
issue in geothermal environments, resulting from
the combine. Nickel-based alloys, such as Inconel

625 and Hastelloy C-276, exhibit superior
performance in highly acidic and oxidizing
conditions, making them suitable for heat

exchangers and other critical ORC components.
Titanium alloys, particularly Ti-6Al-4V, are widely
recognized for their exceptional resistance to
corrosion in chloride-rich geothermal brines,
preventing structural failures in pipelines and other
submerged components [51].

Protective coatings and linings serve as
additional barriers against corrosion by preventing
direct contact between metal surfaces and
aggressive fluids. Epoxy and polymer-based
coatings are extensively used in pipelines and heat
exchangers, providing a non-permeable barrier
against chemical attack [52]. Stress corrosion
cracking (SCC) is another prevalent issue in
geothermal environments, resulting from the
combine. Thermal spray coatings, which include
metal-based, ceramic, and composite coatings, are
often applied to high-temperature components to
improve resistance to oxidation and erosion.
Ceramic coatings, in particular, are highly effective
in geothermal environments due to their excellent
thermal stability and chemical inertness.
Additionally, composite materials such as fiber-
reinforced polymers (FRP) are gaining popularity
due to their lightweight nature and remarkable
resistance to chemical degradation [53]. Recent
advancements in graphene-based coatings have
also demonstrated promising results in enhancing
the longevity of ORC components by providing

ultra-thin, highly corrosion-resistant protective
layers.
The effectiveness of corrosion-resistant

materials and coatings has been demonstrated in
several geothermal ORC plants worldwide. In
Icelandic geothermal plants, extensive use of
titanium alloys in heat exchangers has significantly
reduced failures caused by chloride-induced
corrosion [54]. At the Salton Sea Geothermal Field
in the United States, nickel-based alloys have been
successfully implemented in turbine components to
withstand high concentrations of hydrogen sulfide,
thereby enhancing operational longevity. In Japan,
geothermal facilities have adopted duplex stainless
steels in piping systems to prevent stress corrosion
cracking, minimizing the risk of catastrophic
failures. Ongoing research continues to focus on
developing novel materials, hybrid coatings, and
composite structures to further improve the
durability and efficiency of geothermal ORC
systems. Nanostructured materials and self-healing
coatings represent particularly promising
innovations, as they can actively repair micro-
damages and extend the operational lifespan of
components [55].

2.2.2. Protective Coatings for Erosion and Thermal
Degradation

Protective coatings play a crucial role in
enhancing the durability and performance of
geothermal ORC system components. These
coatings serve as a barrier against erosion, high-
temperature degradation, and chemical attack from
geothermal fluids. The selection of appropriate
coatings depends on factors such as operating
temperature, fluid composition, and mechanical
stresses encountered in the system [54].

Thermal spray coatings, which include metallic,
ceramic, and cermet-based solutions, provide high
resistance to oxidation and wear in elevated-
temperature environments. Metallic coatings, such
as those based on nickel-chromium (NiCr) and
molybdenum, form a protective oxide layer that
minimizes the effects of high-temperature corrosion
[56]. Ceramic-based coatings, including aluminum
oxide (Al,Os) and zirconium oxide (ZrO,), offer
superior thermal insulation and resistance to
chemical attack, making them ideal for use in
turbine components and high-temperature heat
exchangers. Cermet coatings, composed of
tungsten carbide-cobalt (WC-Co) and chromium
carbide-nickel-chromium  (Cr;C,-NiCr),  provide
exceptional wear resistance, ensuring prolonged
durability in harsh geothermal conditions [55].

Polymer-based coatings, including epoxy and
polyurethane coatings, are widely used for
corrosion protection in geothermal pipelines and
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heat exchangers. These coatings form an
impermeable barrier that prevents direct exposure
to aggressive geothermal fluids, thereby mitigating
material degradation. Additionally, polytetrafluoro
ethylene (PTFE) and fluoropolymer coatings offer
low surface energy, reducing scaling and biofouling
in ORC systems. Recent advancements in
nanostructured coatings, such as graphene and
carbon-based solutions, have demonstrated
remarkable chemical resistance and mechanical
strength, making them attractive candidates for
next-generation geothermal applications [56]. The
development of self-healing coatings further
enhances the reliability of ORC components by
enabling autonomous repair of minor damages,
thereby extending operational life and reducing
maintenance costs [55].

2.2.3. Material Compatibility with Working and
Geothermal Fluids

Material compatibility is a critical consideration
in geothermal ORC systems to ensure that
components can withstand the chemical and
thermal conditions imposed by both working fluids
and geothermal brines. High-salinity brines pose a
significant challenge due to their aggressive nature,
necessitating the wuse of corrosion-resistant
materials such as titanium alloys and duplex
stainless steels [57]. These materials exhibit
exceptional  resistance to  chloride-induced
corrosion, thereby preventing premature failure in
pipelines and heat exchangers. Exposure to
hydrogen sulfide (H,S) can accelerate material
degradation, particularly in carbon steels. Nickel-
based alloys, such as Hastelloy C-276, have
proven effective in mitigating sulfide-induced
corrosion, ensuring long-term  reliability in
geothermal environments [58].

Working fluids used in ORC systems also
impact material compatibility. Hydrocarbon-based
ORC fluids, including isopentane and toluene,
require elastomers and seals that resist swelling
and degradation. Ammonia-water  mixtures,
commonly used in Kalina cycle systems, are highly
corrosive to copper-based alloys, necessitating
alternative material selections. Supercritical CO,-
based ORC systems impose additional challenges,
as carbon steel components may experience
accelerated degradation under high-pressure
conditions. Stainless steels and ceramic coatings
have demonstrated improved resistance in such
environments, offering viable solutions for long-
term durability [57].

2.3 Material Behavior under Geothermal Conditions

2.3.1. Impact of Geothermal Fluids on Material
Degradation

The study of material degradation in
geothermal Organic Rankine Cycle (ORC) systems
requires a thorough investigation of the effects of
geothermal fluids on structural materials over
extended periods. Laboratory and field studies
have been conducted to analyze corrosion, scaling,
and material deterioration under geothermal
conditions. These studies provide critical insights
into how different material compositions perform in
aggressive environments characterized by high
salinity, dissolved gases, and elevated
temperatures [59].

Electrochemical and accelerated aging tests
serve as fundamental methods for evaluating
corrosion rates and predicting material longevity.
Electrochemical impedance spectroscopy (EIS)
and potentiodynamic polarization technigques are
widely used to assess the passivation behavior of
metals and alloys in geothermal brines.
Accelerated aging tests, including high-temperature
autoclave exposure and cyclic immersion tests,
replicate the long-term effects of geothermal fluids
on materials within a controlled timeframe [60]. By
systematically studying the degradation behavior of
materials such as carbon steel, stainless steel,
nickel-based alloys, and titanium alloys,
researchers can determine their suitability for
geothermal ORC applications.

Comparative studies between conventional and
advanced materials reveal significant differences in
their resistance to geothermal-induced
degradation. While carbon steels remain
susceptible to pitting and stress corrosion cracking
in chloride-rich environments, duplex stainless
steels and superalloys demonstrate superior
resistance, attributed to their enhanced passive film
stability and alloying elements such as chromium
and molybdenum [60]. Titanium-based materials
exhibit exceptional corrosion resistance but pose
economic constraints due to their high cost. The
incorporation of protective coatings further
enhances material performance by providing an
additional barrier against aggressive geothermal
fluids [61].

2.3.2. Performance of Advanced Materials and
Coatings

The effectiveness of corrosion-resistant alloys
and coatings in geothermal ORC systems has
been extensively investigated through experimental
testing and numerical simulations. Numerous
studies have examined the application of thermal
spray coatings, polymer-based linings, and
advanced ceramic coatings in mitigating wear,
corrosion, and high-temperature degradation.
Experimental methods, such as scanning electron
microscopy (SEM) and X-ray diffraction (XRD),
provide in-depth characterization of coating
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integrity and failure mechanisms under extreme
conditions. These techniques help assess the
adhesion strength, porosity, and microstructural
evolution of coatings subjected to geothermal
environments [62].

Computational methods play an increasingly
vital role in predicting material behavior under
geothermal  conditions.  Computational  fluid
dynamics (CFD) and finite element analysis (FEA)
are widely employed to simulate fluid-material
interactions and predict the effects of erosion,
scaling, and thermal stress on ORC components.
CFD modeling enables the evaluation of fluid
velocity profiles and turbulence-induced
degradation, allowing engineers to optimize
pipeline and heat exchanger designs for reduced
wear [63]. FEA simulations assess mechanical
stresses imposed on materials due to cyclic
thermal loading and pressure fluctuations, ensuring
that critical components such as turbine blades and
heat exchanger tubes maintain structural integrity
over prolonged operational periods.

In addition to experimental and computational
studies, ongoing research is dedicated to
identifying novel materials that offer enhanced
durability in geothermal ORC applications.
Graphene-based coatings, self-healing polymers,
and nano-structured surface modifications are
among the emerging technologies being explored
for their ability to resist corrosion and erosion while
maintaining mechanical strength [63]. These
advanced materials promise to extend component
lifespan and reduce maintenance requirements,
thereby improving the economic feasibility of
geothermal ORC plants [64].

2.3.3. Strategies for Enhancing ORC Component

Lifespan
Ensuring the longevity of ORC system
components requires the implementation of

effective maintenance, monitoring, and material
selection strategies. The use of corrosion inhibitors,
for example, has proven beneficial in reducing the
rate of material degradation by forming protective

flms on metal surfaces. Chemical treatments
involving  phosphate- and molybdate-based
inhibitors have demonstrated success in

geothermal applications by minimizing localized
corrosion in heat exchangers and pipelines [65].

Predictive maintenance, enabled by real-time
monitoring technologies, provides a proactive
approach to identifying material degradation before
catastrophic failures occur (lzuwa et al., 2024).
Sensors equipped with electrochemical monitoring
capabilities can detect changes in material
passivation and corrosion rates, allowing operators
to take preventive action. Non-destructive testing
(NDT) methods, such as ultrasonic thickness

gauging and eddy current testing, further contribute
to the early detection of material wear and
structural defects, facilitating timely repairs and
replacements [64].

Material innovations, including self-healing
coatings and nano-structured materials, offer
promising advancements in extending the service
life of ORC components. Self-healing coatings,
which  contain  microencapsulated corrosion
inhibitors, can autonomously repair minor surface
damages, preventing the initiation of corrosion
sites. Nanostructured surface treatments, such as
plasma-assisted deposition techniques, enhance
material resistance to erosion and fouling by
altering surface roughness and chemical reactivity
[66].

Best practices in material selection remain
paramount to optimizing ORC system durability.
The integration of duplex stainless steels, nickel-
based superalloys, and advanced ceramic coatings
ensures that components can withstand the
combined effects of geothermal fluid exposure and
thermal cycling [67]. By aligning material selection
with the specific operating conditions of geothermal
ORC systems, engineers can minimize unplanned
downtime, reduce maintenance costs, and
enhance overall system efficiency [68]. Continuous
research and technological advancements in
material science will further contribute to the
development of next-generation materials capable
of withstanding the extreme conditions of
geothermal ORC environments, thereby ensuring
sustainable and long-term energy production [69].

3. METHODS

The method consists of three different parts
including the process simulation of the geothermal
binary ORC system for electricity generation, the
implementation of the surrogate models comprising
RSM and ANN to investigate the interrelationship
between influencing parameters and output, and
the model optimisation using RSM and ANN-GA for
optimal parameter conditions. The methods
comprise the following
e Process modelling using Hysys to conduct

modelling and simulation of geothermal binary

ORC system using water and isopentane as

geofluid and working fluid respectively and in

conducting simulation runs for different input
datasets generated with the Box-Behnken
design (BBD) method

e Developing surrogate model for RSM modelling
and ANN modelling using Design Experts and

MATLAB respectively to determine the

relationship between decision variables and

output response and approximate the design
space.
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e Perform optimization based on the modelled
design space using RSM optimization and a
coupled artificial neural network model and
genetic algorithm (ANN-GA)

3.1. Process Modelling and Simulation

3.1.1. Process Model

The model utilised by Hysys is based on mass
and energy balance in steady state condition. The
steady-state energy models for the ORC system
are given below

2 Mip = X Moye 1)
20+ X mpphiy =X W + X ouchous (2)
Whet = Winrbine — Wpump (3)
Wiurbine = mf (hin - hout) (4)

Where m (kg /s) is the mass flow rate, h is the
specific enthalpy of the system’s working fluid
streams, (kJ/kg), Q represent the heat energy
passing via the component boundaries, (Watts), W
is the work energy passing via the component
boundaries, (Watts), Wnet is the net work, Watts,
Wturbine is the turbine work, Watts, Wpump is the
pump work, Watts, i is the mass flow rate, hin is

the specific enthalpy at the turbine entry, hout is
the specific enthalpy at the exit of the turbine

3.1.2. Model Simulation

The simulation model made with Aspen Hysys
vll software consists of; Evaporator, Turbine,
Condenser, and Circulating Pump. The model
consists of three different loops; first the heating
loop which is the hot water rising from the
abandoned oil and gas well, the ORC loop which is
the working fluid (i-CzHs), and finally the cooling
cycle for the condenser which is also water.

The scheme of the ORC power plant is shown
in Fig. 1, displaying the heating loop which is the
hot water rising from the abandoned oil and gas
well, the ORC loop which is the working fluid (i-
C2Hs), and finally the cooling cycle for the
condenser which is also water. An ORC power
cycle utilizing i-CzHs as working fluid is fed (stream
#3) through a condensing heat exchanger (E100
and E101), which is pressurized at about 10 bars.
The ORC scheme comprehends an evaporator, a
turbine, a condenser, and a pump which were
modelled as heat exchangers, expander, air cooler
and pump in Hysys respectively. The process flow
diagram (PFD) for the ORC process simulated in
Hysys is given in Figure 3

Isopentane

In

=

P-100

Geothermal Geothermal Geothermal
Water In Water Water
E-100  Mid E-101  Out
- Cooler
Isopentane Out
Mi .
|sopentane i
Ou? &ﬂblne

AC-100
K-100

Q-100

Figure 1. Process flow diagram (PFD) of the geothermal binary ORC system

The geofluid which is hot water comes from the
wells and enters into HEX1 (E-100) and
subsequently to HEX2 (E-101). iC2Hs is pumped
into the heat exchangers and extracted heat both
from HEX2 and HEX1 and then exits HEX1
towards the turbine. At the turbine, iC2Hs was
vapourised andexpandedthus rotating the turbine
leading to the generation electric power. The iC2Hs
exits the turbine at lower temperature and pressure
and goes to the air cooler where it is cooled and
then pumped back to the HEXs to continue the
cycle. Water that came out from the outlet of HEX2
was injected back into the well and the cycle
continues. Throughout the process, the turbine,

pump, and compressor stages are assumed to be
adiabatic devices. Negligible pressure losses occur
in the components of the ORC and its piping
system. Neglecting the changes of kinetic and
potential energies, the mass and energy balance
equations in the steady-state condition can be
applied to each component.

3.2. Development of Surrogate Model

The surrogate model comprises the RSM and
ANN conducted to investigate the relationship
between input parameters and power produced.
The surrogate models are applied to dual functions
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which includes design space approximation and
optimisation.

3.2.1. RSM Modelling

A response surface methodology (RSM) model
was implemented using Design-Expert software to
predict geothermal power generation by applying
regression analysis to the experimental data
obtained through a Box-Behnken design (BBD).
The BBD incorporated three independent variables
which were found to have impact on the
geothermal power generation; these include:
working fluid (iC2H5) flowrate (kg/s), working fluid
inlet pressure (bar) and turbine outlet pressure
(bar). Several regression models were tested and
evaluated to identify the one with the highest
performance and accuracy, most the independent
variables. The flowchart in Figure 2 illustrates the
steps involved in the RSM modelling. The RSM
selected the best regression model based on
statistical parameters such as R?, adjusted R2
predicted R2, standard deviation, and coefficient of
variation (COV). Multiple regression analyses

facilitated the fitting of these models to the
simulation data, allowing for the estimation of
responses from independent variables using their
general equations. Some of the equations for
several models in RSM is given below.

The general form of the models for linear
regression is given as

y=a,+Xiax +e (5)
The general form of the 2FI regression model is
given as
Y =a,+ X ax + X axx +e (6)
The general form of the quadratic regression
model is given as
Y =0+ X ax + X axx + sy aux? + e (7)

Where x;,x;, x;,, are the input variables and
a;, a;j, a;,and a;; are the coefficient of each of the
terms, a, is the offset and e is the residual or error
term
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No

Define the Optimal Process Parameters

Figure 2. RSM Modelling Flowchart

3.5.2. ANN Modelling

The ANN model was developed using MATLAB
by training with simulation data from the BBD,
aiming to create a network capable of accurately
modellinggeothermal power generation based on
the input of independent variables. The model was
constructed using a dataset of 17data points, with
70% of the data allocated for training, 15% for
testing, and 15% for validation. The ANN model
employed in this study utlizes a feed-forward
neural network architecture, following the
backpropagation learning principle. The network
architecture consists of an input layer, a hidden
layer, and an output layer. Various configurations
of neurons in the hidden layer were tested, with the

ZASTITA MATERIJALA 66 (2025) broj

optimal network topology determined iteratively by
evaluating network performance indices. Training
of the network was performed using the
Levenberg-Marquardt (LM) algorithm, with the
Sigmoid function used as the transfer function. The
optimal number of neurons in the hidden layer was
selected based on the best performance,
measured by the R? value and root mean squared
error (RMSE).

The construction of an ANN model involves
adjusting weights and biases. The output of a
neuron is computed by summing the weighted
inputs and adding a bias, which is then processed
through a transfer function.
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fo = fIEEwix) +b] (8)
Where k, wi, b, and f(n) are the number of
elements in the input vector xi, the interconnection
weight, the bias for the neuron (n), and the neuron
output, respectively. ANNs feature various network
architectures,  training  algorithms,  transfer
functions, and optimal neuron counts [70]. The
ANN model employed in this study utilizes a feed-
forward neural network architecture based on the
backpropagation learning principle. For training
nonlinear functions, such as those encountered in
many chemical processes, the tangent sigmoid
transfer function (tansig) is commonly used due to

Xp,

Xpo

Xpr

XpN

its effectiveness. The general formula for the tansig
transfer function is given as follows:

2
10 = 1=

Additionally, following the recommendations of
Hoijjat et al. [71], input parameters were normalized
by dividing each column by its maximum value,
ensuring a range of zero to one (0-1). The study
utilized these normalized parameters as inputs for
modelling the artificial neural network.

The structure of the network is illustrated in
Figure 3.

-1

Oppg

J

Input Layver

Hidden L.aver

Output Layer

Figure 3. Sample network architecture for ANN modeling [27]

The flowchart in figure 3 describes the steps of the ANN modelling
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Figure 4. ANN Modelling Flowchart

3.2.3. Performance Metrics of Surrogate Models

The predicted power generation from RSM and
ANN models were assessed and compared in
terms of statistical performance metricsincluding
coefficient of determination (R?), adjusted, standard
deviation and root mean squared error (RMSE).
The formulas for these metrics are given:

2
2 _ Eln=1(xa,i_xp,i)

- 11
Eln=1(xp,i_xa,ave)2 ( )
AdjustedR? = 1 — [(1 — R?) x "T‘i]

n—-k-1

(12)
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1 2

RMSE = J;zyzl(xp_i - Xg) (13)

Where n is the number of experimental runs

Xp,iis the estimated values, Xaiis the experimental

values, Xaave iS the average experimental values, k
is the number of input variables

3.6.4. Power Generation Optimization

Optimization was carried out using both

Response Surface Methodology (RSM) and
artificial neural network coupled Genetic Algorithm
(ANN-GA). Initially, a quadratic model was
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developed through RSM. This model was
optimized using RSM itself, and then it was
exported to MATLAB, where GA was applied for
further optimization. This process yielded two
distinct optimization outcomes—one from RSM and
the other from GA. These results were
subsequently compared, focusing on the values of
the independent variables and the resulting
optimized power generated.

4. RESULTS

The results for power generationfrom the surro-
gate models conducted is presented in this section
which model result results from RSM and ANN,
and optimisation results from RSM and ANN-GA.

4.1. Results for RSM analyses

The results of the RSM modelling are
presented and discussed in this section,
encompassing Table 1, Table 2, and Table 3.
These tables display both the actual output from

the process simulation and the corresponding
predicted output responses from RSM, considering
input variables such as working fluid flowrate,
working fluid outlet pressure and turbine outlet
pressure. Among several regression models
tested, the quadratic model demonstrated the
highest fit to the actual data for as shown in Table
1 and was selected for its superior prediction
accuracy. Equation 20 is the quadratic model
generated by RSM for the power generation.

Table 1. Error data for RSM model analyses

Source P value R? Adjusted R?
Linear <0.0001 | 0.8850 0.8145
2FI 0.1381 0.9117 0.7587
Quadratic 0.0001 | 0.9923 0.9462 Suggested
Cubic 1.0000 Aliased

Power Generation (kWh)= 475.8 + 144.374 A + 243.491B — 76.9425C +
+ 81.07754B — 26.025AC + —3.99BC + 0.15625A4% — 96.3788B% + 11.2188(C?

Where variables A, B, C represent working fluid
flowrate (kg/s), working fluid inlet pressure (bar)
and turbine outlet pressure (bar) respectively.This
equation can be utilized to predict the response for
given levels of each factor. To achieve accurate
predictions, the levels must be specified in the
original units of each factor, both for the input
parameters and the response variables. To assess
the significance of the model coefficients, Analysis
of Variance (ANOVA) was conducted. Table 2 and
Table 3 summarize the ANOVA results and fit
metrics for the power generation output responses.
These tables include degrees of freedom, mean
square values, F-values, and p-values. In Table 5,
the p-values are smaller than 0.0001, and the high

Table 2. ANOVA

F-values indicate that the models are statistically
significant.

The RSM model's predictions closely matched
the actual simulation data, as shown in Table 8. To
evaluate the statistical significance of the model, an
Analysis of Variance (ANOVA) was conducted on
equation 14, as detailed in Table 2. The results
indicated that the model was statistically significant
(p < 0.0007), with a non-significant lack of fit. The
adjusted R2 value (0.9923) and predicted R2? value
(0.9462) further confirmed the model's robustness,
suggesting that the key factors influencing power
generated—such as working fluid flowrate (kg/s),
working fluid inlet pressure (bar) and turbine outlet
pressure (bar)—were effectively captured by the
model.

Source Sum of Squares | df | Mean Square | F-value p-value
Model 7.57E+05 9 84093.51 230.56 <0.0001 | significant
A-Working Fluid Flowrate 1.67E+05 1 1.67E+05 457.19 < 0.0001
B-Working Fluid Outlet Pressure 4.74E+05 1 4.74E+05 1300.42 | <0.0001
C-Turbine Outlet Pressure 47361.19 1 47361.19 129.85 < 0.0001
AB 26294.24 1 26294.24 72.09 < 0.0001
AC 2709.2 1 2709.2 7.43 0.0295
BC 63.68 1 63.68 0.1746 0.6886
A2 0.1028 1 0.1028 0.0003 0.9871
B2 39111 1 39111 107.23 < 0.0001
Cc2 529.94 1 529.94 1.45 0.2672
Residual 2553.12 7 364.73
Lack of Fit 2553.12 3 851.04
Pure Error 0 4 0
Cor Total 7.59E+05 16
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Figure 5 shows the relationship between the actual and predicted results from the RSM model

Predicted vs. Actual

1000 —

BOO0 —

600 —

Predicted

400 —

200 —

600 800 1000

Actual

Figure 5. Parity plot of Actual vs Predicted values of power generated from RSM model

The parity plot in figure 4 shows how the data
points from the actual (process simulation datal)
and predicted power generated clustered aroun the
45° line. This figure demonstrate that the actual
and predicted output responses closely align
around the 45-degree line for all indicating strong
regression and agreement between the two
datasets. Thus, there exists an acceptable level of
agreement between the actual process simulation
data and the predicted responses from the RSM
models.

4.2. Interaction Response of Input Parameters on
Power Generated using 3D Plots

Figure 6 illustrates the 3D response surface
plot depicting the interaction between independent
variables and power production while figure 7
shows the contour plots for the power production
from the RSM modelling. These plots visually
represent how changes in the independent
variables (such working fluid flowrate (kg/s),
working fluid inlet pressure (bar) and turbine outlet
pressure (bar)) influence the power production
providing insights into their mutual interactions.

Both the 3D surface plots in figure 6a-c and the
contour plots in Figure 7a-c are used to make

ZASTITA MATERIJALA 66 (2025) broj

analysis of the interactions between the

independent variables and the response.

Figure 6a and Figure 7a shows the interactive
effect of working fluid flowrate and working fluid
outlet pressure on the power generated. As can be
observed, increasing the working fluid flowrate
increases the power generated by the binary ORC
system at higher outlet pressures of the working
fluid. In other words both the flowrate and outlet
pressures of the working fluid have positive effect
on the power generated as their increase results to
higher power generated.

Figure 6b and Figure 7b shows the interactive
effect of working fluid flowrate and turbine outlet
pressure on the power generated. It can be
observed that at lower turbine outlet pressures,
increasing the flowrate of the working fluid
increases the power generated by the turbine.
However, when the flowrate of the working fluid is
kept constant, the power generated by the turbine
decreases as the turbine outlet pressure increases.

Figure 6¢ and Figure 7c shows the interactive
effect of working fluid outlet pressure and turbine
outlet pressure on the power generated. It is seen
that at lower turbine outlet pressures, increasing
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the outlet pressure of the working fluid increases
the power generated by the turbine. However,
when the outlet pressure of the working fluid is kept
constant, the power generated by the turbine
decreases as the turbine outlet pressure increases.
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Figure 6. 3D response surface plots for power
production from RSM
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4.3. Results for ANN Modelling

The ANN neural network model was employed
to establish the relationship between the input
factors and the output response. The selection of
the optimal neural network for the ANN analysis
was based on the performance of various transfer
functions, training algorithms, network
architectures, and the optimal number of neurons.
Multiple training sessions were conducted, and the
best-performing results were selected to represent

Training: R=0.9904

the model. The performance of these factors was
evaluated using metrics such as R? values, mean
squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). A higher R2
value, along with lower MSE, RMSE, MAE, and
MAPE values, indicates better predictive accuracy
in relation to the model's factors. The R-value
corresponding to the selected trained ANN model
is presented in Figure 6.
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Figure 8. Regressionplot for the training in ANN
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Figure 8 shows the Regression values

corresponding to the ANN training performed. The
Overall R values for the ANN model was 0.9943. It
is seen that ANN gave notably high R values which
indicate very good predictions for the power
generated.

Table 4 shows the values predicted by RSM
and ANN models for each of the input variables
and actual output data. Table 4 shows that there is
a high correlation between the actual and predicted
results for the RSM and the ANN models.
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Table 4. Actual and predicted results for power generated corresponding to RSM and ANN modelling.

Working Fluid Working Fluid Turbine Outlet Actual RSM Predicted ANN Predicted
Run Flowrate, Outlet Pressure Pressure, G:nog;lgtre d Power Power Generated,
kgls bar bar KW Generated, kW kW

1 9 11 1.7 475.8 475.8 475.9489

2 6 19 1.7 415.2 397.62 415.1577

3 9 11 1.7 475.8 475.8 475.9489

4 12 11 1.2 753 734.52 753.0379

5 9 19 1.2 714.7 715.06 714.7729

6 12 3 1.7 181.8 199.38 181.8843

7 6 11 1.2 376.5 393.72 376.4783

8 9 11 1.7 475.8 475.8 475.9489

9 9 3 2.2 74.56 74.2 94.31542
10 9 11 1.7 475.8 475.8 475.9489
11 6 3 1.7 90.91 72.79 93.33428
12 6 11 2.2 273.4 291.88 273.4133
13 9 19 2.2 554.1 553.2 554.146
14 9 11 1.7 475.8 475.8 475.9489
15 12 11 2.2 545.8 528.58 505.9555
16 9 3 1.2 219.2 220.1 132.1279
17 12 19 1.7 830.4 848.52 829.374

Table 5 shows the comparison of performance
metrics for the RSM and the ANN predictions.

Table 5: Performance metrics for RSM and ANN

Predictions
RSM ANN
MSE 150.1611 562.7336
RMSE 12.2540 23.7220
MAE 8.5482 8.8932
MAPE 0.0318 0.0450
R? 0.9966 0.9886

From Table 5, it is seen that both RSM and
ANN models gave realistic predictions of the
actual/experimental data for the error metrics

considered. In terms of R? values, both RSM and
ANN gave predictions higher than 0.9 which
indicates very good predictions of the test data.
The R? values for RSM was 0.9966, while that for
ANN was 0.9886. Thus, relative to R? values the
RSM performed better than the ANN. The MSE
and MAE of RSM model were 150.1611 and
12.2540 respectively while the MSE and MAE for
ANN were 562.7336 and 23.722respectively. The
MAPE of RSM and ANN models were 3.18% and
4.5% respectively it is evident that the RSM
performed better than the ANN model.

Additionally, the model performance in this
study were compared with performance of scholars
who conducted modelling on geothermal systems
as summarized in Table 6.

Table 6. Comparison of model performance of study with results from literature

Area of Study Target Parameter Model Used R2 RMSE Reference
E:gﬁ{y Geothermal Power Power Generated ANN 0.999 0.272 [27]
Double Flash Cyc_le Net Power Generated Multiple Ll_near - 0.9997 [72]
Geothermal Turbine to Regression
Geothermal Binary ORC System Performance Taguchi model 0.941 4.29 [73]
Systems
Geothermal ORC system Power Generated ANN 0.9986 51.2 [74]
Geothermal ORC system Turbine performance ANN 0.9989 0.0009 [25]
Enhanced Geothermal Geothermal production ANN 0.998 0.067 [75]
systems temperature
Geothermal Binary ORC ANN 0.9886 23.7220 This
Power Generated
system RSM 0.9966 12.2540 Study
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Table 6 shows the performance of various
studies on geothermal systems using various
modelling techniques in describing the relationship
between the input parameters and the target
output. It can be observed that from literature
several models have been successfully utilised for
modelling geothermal systems with excellent
performance. Moreso, it is seen that the
performance of the ANN and RSM model realised
in this study are close to the performances seen in
literature in several studies conducted on
geothermal systems especially in the area of
geothermal binary ORC systems for power
generation.

4.4. Optimisation of Power Generated

Table 7 gives the summary of the optimisation
results of power generated corresponding to RSM
and ANN-GA optimisations performed.

Table 7. Optimisation results

Parameter RSM | ANN-GA | HYsYs
Check
Working fluid flowrate,
MMscfd 11.8 12 12
Working fluid outlet 18.47 19 19

pressure, bar

Turbine outlet pressure 1.2 1.2 1.2

Power generated, kW 940.78 | 958.48 952.9
Power Generated from

Hysys at optimal factors, | 927.2 952.9 -
kw

Percentage error 1.46 0.59 -

Table 7 provides a comparative analysis of the
optimization results obtained using two distinct
methodologies: Response Surface Methodology
(RSM) and the coupled Artificial Neural Network-
Genetic Algorithm (ANN-GA). These optimization
techniques adopt fundamentally different
approaches, which naturally result in variations in
their outcomes. To evaluate their performance, an
optimization check was conducted in Aspen
HYSYS to determine the optimal input factors
based on sensitivity analysis trends. The optimal
input variables predicted by both methods were
subsequently inputted into HYSYS to verify the
corresponding power output.

From the results presented in the table, it is
evident that ANN-GA demonstrated superior
optimization capabilities. The method accurately
predicted the ranges of input variables—working
fluid flowrate, working fluid outlet pressure, and
turbine outlet pressure—that yielded the optimal
power output. The optimal values identified by
ANN-GA were consistent with those determined
directly by HYSYS, signifying excellent alignment
and optimization performance. This consistency
highlights the robustness and reliability of ANN-GA

in predicting the key input parameters required for
maximizing power generation.

In contrast, RSM struggled to accurately predict
the optimal input values. Although RSM provided a
set of predicted optimal factors, these values
deviated from the actual optimal values determined
by HYSYS. To further assess the optimization
performance of both methodologies, their predicted
input values were tested in HYSYS, and the
corresponding power outputs were analyzed. ANN-
GA achieved a power output of 958.48 kW when its
predicted values were inputted, closely matching
the 952.9 kW output determined directly by
HYSYS. This resulted in a percentage error of just
0.59%, demonstrating the high accuracy of ANN-
GA not only in parameter prediction but also in
achieving optimal power generation.

On the other hand, the power output generated
using the input factors predicted by RSM was
927.2 kW when tested in HYSYS. This value
significantly deviated from the 940.78 kW predicted
by RSM itself, resulting in a higher percentage
error of 1.46%. The discrepancy between RSM's
predicted and actual performance highlights its
limitations in identifying the precise input variables
required for maximum power generation. Moreover,
the power output achieved by RSM was
considerably lower than the optimal power output
obtained via ANN-GA, further emphasizing the
comparative weakness of RSM as an optimization
tool for this process.

The analysis highlights the robustness and
accuracy of the ANN-GA model, which not only
closely aligned with HYSYS predictions but also
consistently delivered power outputs that were
nearly identical to the actual optimal values. Its
integration of machine learning (via ANN) and
evolutionary optimization (via GA) likely contributed
to its superior performance by effectively capturing
complex nonlinear relationships and exploring the
solution space more comprehensively. ANN-GA
significantly outperformed RSM in optimization
performance. While RSM exhibited notable errors
and limitations, ANN-GA proved to be a highly
reliable and robust optimization technique,
demonstrating its potential as a powerful tool for
process optimization in scenarios where accuracy
and efficiency are paramount.

5. CONCLUSION

Modelling and optimization of geothermal
binary Organic Rankine Cycle (ORC) systems has
been accomplished in this study, leveraging Aspen
HYSYS process simulations with RSM and ANN
models. Aspen HYSYS was utilized to model the
process system and generate simulation data,
which served as the foundation for developing
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RSM and ANN models. The RSM and ANN models
were designed using the Box-Behnken Design
(BBD) for three factors: working fluid flowrate,
working fluid outlet pressure, and turbine outlet
pressure, while optimization was performed
independently using RSM and ANN-GA.

In terms of modelling, both RSM and ANN
demonstrated excellent capabilities in capturing the
nonlinear relationships between the input
parameters and the system's power generation.
The RSM model, however, outperformed ANN with
a superior coefficient of determination (R?) of
0.9966 compared to 0.9886 for ANN. Additionally,
the RSM model achieved a lower root mean square
error (RMSE) of 12.254 compared to ANN's RMSE
of 23.722, highlighting its superior predictive
accuracy and robustness in modeling the system’s
behavior.

When applied to optimization, the ANN-GA
demonstrated better performance than RSM,
achieving optimal power generation values with a
lower percentage error when validated against
Aspen HYSYS. The power output predicted by
ANN-GA was 958.48 kW, exhibiting a minimal error
deviation of 0.59% compared to the Hysys-
validated output. In contrast, RSM gave an optimal
power output of 940.78 kW which gave a
percentage error deviation of 1.46%. when
validated in HYSYS. These results highlights the
superior optimization capabilities of ANN-GA,
which effectively integrated machine learning and
evolutionary algorithms to achieve higher accuracy
in navigating the solution space than RSM.
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MODELIRANJE | OPTIMIZACIJA GEOTERMALNIH BINARNIH ORC SISTEMA
KORISCENJEM METODOLOGIJE POVRSINE ODGOVORA | VESTACKIH

NEURONSKIH MREZA

Ova studija se fokusira na modeliranje i optimizaciju geotermalnih binarnih sistema Organic
Rankine Cicle (ORC) kako bi se poboljSala proizvodnja energije iz geotermalnih sistema koji
koriste vodu kao geofluid. Aspen HISIS, koji koristi Peng-Robinsonov paket svojstava, kori§cen je
za simulaciju procesa, generiSuci kriticne podatke procesa za naknadno modeliranje i optimizaciju.
Metodologija povrSine odgovora (RSM) i veStacka neuronska mreza (ANN) su koris¢ene za
modeliranje odnosa izmedu ulaznih faktora i izlaznog odgovora, koriste¢i Bok-Behnken dizajn
(BBD) za tri kljuéne ulazne varijable: brzinu protoka radnog fluida, izlazni pritisak radnog fluida i
izlazni pritisak turbine. | RSM i ANN su pokazali snazne prediktivne sposobnosti, pri cemu je RSM
postigao R2 vrednost od 0,9966 i RMSE od 12,254, dok je ANN postigao R2 vrednost od 0,9886 i
RMSE od 23,722, $to ukazuje da je RSM neznatno nadmaSio ANNccura u smislu ANNccura.
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Optimizacija ORC sistema je sprovedena koris¢enjem RSM i ANN u kombinaciji sa genetskim
algoritmom (ANN-GA), sa ciljem odredivanja optimalnih vrednosti za ulazne i izlazne parametre.
Rezultati optimizacije ANN-GA su potvrdeni koriS¢enjem Aspen HISIS i pokazali su superiorne
performanse u odnosu na RSM. ANN-GA je predvideo optimalne vrednosti protoka radnog fluida,
izlaznog pritiska radnog fluida i izlaznog pritiska iz turbine od 12 kg/s, 19 bara i 1,2 bara,
respektivno, $to je savrSeno odgovaralo rezultatima validacije Aspen HISIS. Ova optimizacija je
dala izlaznu snagu od 958,48 kV, koja je bila usko uskladena sa izlazom validacije Aspen HISIS
od 952,9 kV, Sto odrazava minimalnu procentualnu greSku od 0,59%. Nasuprot tome, RSM je
predvideo blago odstupanje optimalnih vrednosti od 11,8 kg/s, 18,47 bara i 1,2 bara, sa
odgovaraju¢om izlaznom snagom od 940,78 kV. Kada je potvrden sa HISIS-om, RSM-predvidena
izlazna snaga je bila 927,2 kV, Sto je rezultiralo vecom greSkom u procentima od 1,46%, ¢ime je
loSiji uéinak u odnosu na ANN-GA. Studija naglaSava komparativne snage RSM-a i ANN-GA,
pokazujuéi da, dok se RSM istice u preciznom modeliranju odnosa i interakcija izmedu ulaznih
faktora i izlaznih odgovora, ANN-GA okvir pokazuje znatno vecu sposobnost u navigaciji slozenim
nelinearnim optimizacijskim pejzazima. Ovo naglaSava efikasnost integracije modela maSinskog
ucenja sa metaheuristickim algoritmima za poboljSane performanse optimizacije. Nalazi doprinose
unapredenju metodologije za optimizaciju geotermalnih ORC sistema i nude robustan okvir za
poboljsanje efikasnosti proizvodnje energije u primenama geotermalne energije.

Kljucne reci: Geotermalna energija, RSM, ANN, genetski algoritam, Hisis simulacija, Proizvodnja
elektricne energije, binarni ORC sistemi
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