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ABSTRACT 

The current study discusses the value of improved biomaterials, particularly coatings for titanium 
and its alloys employed in surgicalsettings. Demonstrates how coating processes like 
electrophoretic (EPD) can be used to enhance mechanical and biological qualities of these 
materials. Because titanium is lightweight and resistant to corrosion, it is a preferred material for 
medical implants used in tissue repair and fracture treatment. The study also analyzes the use of 
ceramic coatings like hydroxyapatite and TiO2 in promoting bone regeneration, as well as issues 
with biocompatibility and tissue adhesion that arise in metallic implants. Positive outcomes 
indicate that advancements in biomaterials can enhance treatment results and augment the 
efficacy of medical implants, hence augmenting patients' quality of life. 
Keywords:Bio-coating, Titanium, Anti-corrosion alloys,Electrophoretic deposition. 

 

1. INTRODUCTION 

The use of bio-active metallic materials in 
medical treatments can be traced back to nearly 
twenty years ago.About 70 to 80% of the devices 
used in the medical field are made from bio-
compatible materials. Metallic bio-materials are of 
great importance in fracture fixation, bone repair, 
and the treatment of damaged tissues, especially 
hard tissues, which contributes to improving the 
quality of life for patients.  This is due to its great 
strength, durability, and toughness. The need for 
bio metallic materials with superior mechanical 
properties is significantly increasing due to the gro-
wing number of elderly people worldwide, as older 
adults face a higher risk of hard tissue failure [1]. 

In the early stages of developing metal 
implants, there were challenges related to 
corrosion and reduced strength. The choice of the 
type of metal used in biomedical applications 
depends on the specific uses of these implants. 
Table 1 provides a summary of the different types 
of metals commonly used in various classifications 
of implants [2]. 
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Due to their high strength, durability, and low 
wear rate within the body, implant materials such 
as titanium, stainless steel, cobalt, and their alloys 
are frequently used in orthopedic and dental 
applications [3]. Figure 1  shows many typical 
applications for metal implants  [4]. 

Titanium alloys are widely used in dental 
implants and bone grafting, as well as in other 
devices such as plates and screws, thanks to a 
range of distinctive properties, including good bio-
compatibility, resistance to corrosion and wear, 
excellent mechanical properties, and effective 
osseointegration. Porous titanium alloys have been 
developed as an alternative to orthopaedics mate-
rials, providing good biological fixation through the 
growth of bone tissue within the porous network [5]. 

Despite the numerous benefits that titanium 

materials offer, there are concerns regarding their 

adequate stability and ability to resist corrosion in 

the body's fluid environment, especially in the long 

term.  The release of corrosion products can lead 

to metallosis, which in turn may cause loosening of 

the implant or deterioration of its properties [6]. 

Furthermore, rejection of some internal prosthetics 

by the recipient may occur shortly after surgery due 

to an allergic reaction [7]. 

In addition, the implant should have a suitable 
micro-structure that enhances the formation of a 
permanent bond between the tissue interface and 
the implant [8].
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Table 1. Classification of implants and types of metals used [2] 

Division Example of implants Type of metal 

Cardiovascular Stent Artificial valve 
316L SS; CoCrMo; Ti 

Ti6Al4V 

Orthopaedics 
Bone fixation (plate, screw, pin) 

Artificial joint 
316L SS; Ti; Ti6Al4V 

CoCrMo; Ti6Al4V; Ti6Al7Nb 

Dentistry Orthodontic wire Filling 
316L SS; CoCrMo; TiNi; TiMo 

AgSn(Cu) amalgam, Au 

Craniofacial Plate and screw 316L SS; CoCrMo; Ti; Ti6Al4V 

Otorhinology Artificial eardrum 316L SS 

 

Figure 1. Biomaterials for human application [4] 

 

Based on what has been mentioned earlier, 
methods are being explored to modify the surface 
of metal implants in order to meet these 
requirements, particularly concerning long-term 
aspects. The following methods that have already 
been used can be identified: thermal plasma 
spraying [9], plasma spray [10], physical vapor 
depo-sition[11], sol–gel [12], ano-dic oxidation (AO) 
[13], micro-arc oxida-tion (MAO) [14], and electro-
phoretic deposition (EPD) [15]. 

The last three methods mentioned fall under 
the category of electro chemical methods, which 
are characterized by their simplicity and relatively 

low cost compared to the other methods 
mentioned.  Furthermore, this process contributes 
to facilitating the production of coatings with 
diverse structures, roughness, crystallization, 
chemical composition, and wettability, in addition to 
properties such as corrosion resistance and 
mechanical characteristics on materials of various 
shapes. The equipment used in this context is also 
considered cost-effective [16]. 

The popularity of electrophoretic deposition 
(EPD) is increasing as an effective method for 
processing biomaterials, especially in the field of 
bio active coatings and nano structures used in 
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medicine[17].HA has been an attractive option for a 
long time as a partial alternative to bone, due to its 
similarity to the mineral component of natural 
bone.The synthetic hydroxyapatite (HA) material 
has shown excellent biocompatibility in the 
laboratory with cultured osteoblasts, as well as 
other cell types, which grow easily on HA com-
pounds or surfaces coated with it. Hydroxyapatite 
(HA) is considered a bioactive ceramic that 
promotes bone growth; however, it suffers from 
relatively weak mechanical properties [18]. 

To improve the mechanical properties of 
hydroxyapatite (HAp) and to produce coatings with 
better bio-activity and enhanced mechanical 
properties, another type of bio-ceramic material is 
combined with HAp, such as titanium dioxide 
(TiO2), which is considered one of the other 
inactive bioceramics. 

Titania is characterized by exceptional corro-
sion resistance in body fluids, as well as high 
fracture strength and significant load-bearing 
capacity, with a sufficient level of wear resistance 
[19,20]. Also it is a bio compatible material that is 
compatible with living organisms and is characte-
rized by its biological activity, as it possesses 
antibacterial activity and effective properties 
against fungi [21]. 

2. TITANIUM AND TITANIUM ALLOYS 

Titanium (Ti) is a shiny metal with a silver color. 
It is characterized by a high strength of up to 
430 MPa and a low density of 4.5g/cm3, while iron 
has a strength of 200 MPa and a density of 7.9 
g/cm3. Therefore, titanium has the highest strength-
to-density ratio among all other metals. Further-
more, titanium is characterized by a relatively high 
melting point exceeding (1650°C or 3000 °F), and it 
is also a paramagnetic material with relatively low 

electrical and thermal conductivity. This metal 
exists in two different crystalline forms known as 
body-centered cubic (bcc) and hexagonal close-
packed (hcp) structures, as shown in Figures 2 (a) 
and (b), respectively [22]. 

 

a)                                      b) 

Figure 2. Crystalline state of titanium: (a) bcc, and 
(b) hcp [22] 

At low temperatures, pure titanium is characte-
rized by a close-packed hexagonal structure known 
as alpha titanium (α titanium).At high temperatures, 
the stable structure is the body-centered cubic 
(bcc) structure, known as titanium β [23]. 

2.1. Effect of alloying elements on titanium 
properties 

In titanium alloys, three types of alloying 
elements are generally utilized: neutral elements, α 
-stabilizers, and β-stabilizers. In titanium alloys, 
elements like N, Al, O, and C are referred to as α-
stabilizers because they generate the α phase [24-
26].While components that yield the β phase are 
categorized as β-stabilizers. β-stabilizers can be 
classified into β-eutectoid and β-isomorphous 
elements according to the alloying elements that 
are added to titanium.

 

Figure 3. Different titanium alloy stabilizer types (a) neutral, (b) α-stabilizing, (c) β-stabilizing 
(isomorphous) and (d) β-stabilizing (eutectoid) [27] 
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As shown in Figure 3 isomorphs elementssuch 
as tantalum (Ta), molybdenum (Mo), vanadium (V), 
and niobium (Nb) are highly soluble in titanium. 
Nevertheless, eutectoid elements—manganese 
(Mn), chromium (Cr), silicon (Si), iron (Fe), cobalt 
(Co), nickel (Ni), and copper (Cu)—show extremely 
little solubility in titanium and are more likely to 
form intermetallic compounds with other elements. 
Conversely, elements with almost little influence on 

the α/β phase border, such as tin (Sn), hafnium 
(Hf), and zirconium (Zr), are regarded as neutral 
elements [27-32]. 

Titanium alloys are predominantly recommen-
ded for implant fabrication due to their exceptional 
corrosion performance. Table 2 shows the different 
stabilizing elements added to titanium alloy to 
stabilize particular structure and improve properties 
of titanium alloys [33-38]. 

 

Table 2. Titanium alloy stabilizer with its effects and different properties [38] 

Stabilizing elements Impact on transition temperature Effects on properties of Ti 

α-stabilizer :Fe, Mo, Ni, V, Cr, Nb Increase Hardening 

β-stabilizers : N, Al, O,  C Decrease Grain refiners 

Neutral elements: Zr and Sn No noticeable impact Hardening 
 

3. CORROSION RESISTANCE OF TITANIUM 
AND TITANIUM ALLOYS 

The natural breakdown of metals and alloys 

brought on by interactions with the environment 

that are chemical, biological, and electrochemical 

in nature. Conditions that might cause corrosion 

include high pressure, heat, humidity, oxygen, 

inorganic and organic acids, and chlorides [39]. 

Metals are destroyed by corrosion, which turns 

them into oxides or other corrosion products. 

Because corrosion causes parts or buildings to 

become unusable, it reduces the amount of earth's 

material resources that can be used to replace 

them, which has an impact on the world's metal 

supply [40]. The high corrosion resistance of 

titanium alloys is due to the presence of a thin 

oxide layer that adheres to their metallic surface. 

This film naturally forms when titanium alloy is 

exposed to air or oxygen-rich environments, due to 

the close relationship between titanium and 

oxygen. Due to this fact, the oxide film can be 

easily repaired even in the presence of oxygen at 

low partial pressures (ppm) when it is subjected to 

damage. Although the oxide layer that covers 

titanium and its alloys has a high level of stability, 

when these materials are used in agriculture, 

electrochemical reactions may occur with 

physiological fluids. These reactions are 

exacerbated by the interplay between corrosion 

and mechanical stresses and/or wear [41]. 

4. SURFACE MODIFICATION TECHNIQUES 

It has become extremely necessary to prevent 
the corrosion of biomaterials, especially to address 
the infections and allergic reactions that may arise 
from the implantation of these materials in the 
human body.Due to the issue of corrosion, a set of 
techniques has been adopted to modify the surface 

with the aim of improving corrosion behavior. The 
introduction of surface modifications on 
biocompatible metals is considered the "optimal 
solution" so far to enhance corrosion resistance 
performance, as well as to achieve superior 
biocompatibility and promote bone integration of 
biocompatible metals and alloys. Biocompatible 
metals include processes such as coating 
deposition, the development of a passivation oxide 
layer, and ion beam surface modification [42].  

The acceptance of the biomaterial by the 
human body is the primary criterion for selection. 
When the material is implanted, it shouldn't have 
any negative side effects—such as allergies, 
inflammation, or toxicity—either right away during 
surgery or in the following[43]. Biomaterials can be 
modified via a variety of commonly employed 
surface modification techniques, including covalent 
grafting, surface coatings and synthetic films, 
plasma treatment, and self-assembled monolayers 
(SAMs) [44]. 

4.1. Coatings for titanium and its alloys in 
biomedical applications 

Metal implants may sometimes fail in surgical 

procedures due to several factors, including 

insufficient biocompatibility, high degradation rates 

(as seen with magnesium alloys), inflammatory 

response, infection, inertness (such as with 

stainless steel, titanium, and cobalt-chromium 

alloys), as well as low wear resistance, mismatch in 

elastic modulus, excessive wear, and the presence 

of hidden stress. Therefore, it is important to 

address this issue by developing a method that 

contributes to improving the vital functions of 

metallic implant surfaces, by modifying the surface 

and shape of the materials without affecting the 

mechanical properties of the metallic implants as 

shown in Figure 4. 
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Figure 4. A broad division of surface engineering methods 

 

The process of surface modification of metals 
through the use of coatings is considered one of 
the effective methods for enhancing the 
performance of implant materials, among the many 
available techniques [45]. By virtue of their 
reliability and efficiency, ceramic coatings are 
considered the optimal choice for activating 
implants that come into direct contact with bones 
and tissues. This is due to their unique properties 
that enhance bone compatibility and provide high 
stability [46,47]. The surface modification process 
using coatings can enhance the antibacterial 
activity of biomaterials. Coated surfaces contribute 
to improving the attachment of peptides to cells, 
directing changes in host cells, as well as 
extracellular matrix (ECM) proteins and tissue 

growth, leading to further improved acceptance of 
biomaterials. Coating of Ceramics on biomaterials 
show promising results in the field of orthopedic 
surgery, as they play an important role in 
enhancing bone regeneration and repair [48]. 

4.1.1. Hydroxyapatite Coating 

Hydroxyapatite (HAp) is a natural mineral form 

of calcium apatite, characterized by the chemical 

formula Ca5(PO4)3(OH). It is often expressed in 

the formula Ca10(PO4)6(OH)2 to indicate that the 

crystal unit cell consists of two molecules. The HAp 

crystal structure unit cell, which is made up of Ca, 

PO4, and OH groups densely packed together, is 

depicted in Figure 5 [49]. 

 

Figure 5. The hydroxyapatite molecular structure: a unit cell perspective on the hexagonal crystal structure [49] 



S. Jabbar, S. A. Abdulsada et al. Investigating the effect of biomaterial coating deposited ... 

ZASTITA MATERIJALA 66 (2025) broj  6 

Hydroxyapatite is the main component in the 
structure of tooth enamel and bone minerals, 
contributing to their hardness. Hydroxyapatite is 
used in many fields due to its excellent 
biocompatibility and active properties. In the field of 
medicine, it is used in orthopedics and dental 
implants due to its structural similarity to the 
minerals found in bones [50]. 

4.1.2. Titanium Oxide Coating 

The oxide of titanium that occurs naturally is 
called titanium dioxide (TiO2). It is sometimes 
referred to as titania. One of the most widely used 
ceramic materials in applications including sensors, 
photovoltaics, self-cleaning glass, water purification, 
photo-catalyst, and corrosion protection coatings is 
titania in its several crystalline forms. Titania is 
utilized so effectively in all these industries as a 

thin or thick coating film primarily due to its high 
chemical durability and thermal stability [51]. 

Titania exists in three primary crystalline 
phases: rutile, anatase, and brookite. These 
phases can exist as nanomaterials, and the grain 
size affects how stable they are. Whereas anatase 
titania is commonly utilized as spherical particles 
with a diameter of about 20 nm, rutile is regularly 
employed as a white pigment in polymers with 
particles size ranging from 200 to 300 nm [52]. 

All polymorphs, as illustrated in Figure 6 
feature distorted TiO6 octahedral formed by 
titanium cations six-fold coordinated to oxygen 
anions. These structures are connected by sharing 
the octahedral edges (some also have corner 
sharing). TiO6 octahedral building block arrange-
ment reveals the crystal formations of titania [53]. 

 

Figure 6. Polymorphs of TiO2 crystal structures:(a) Rutile, (b) Brookite and (c) Anatase [53] 

 

5. ELECTROPHORETIC DEPOSITION METHOD 

EPD is a bridge that connects two processes:  

deposition and electricity [53].The EPD method is a 

versatile approach that may be used to deposit a 

wide range of materials, including composites, 

metals, ceramics, glasses, and polymers. This is 

an economical solution that doesn't require expen-

sive equipment. The EPD's widespread use can be 

attributed to its simplicity in regulating the mor-

phology and thickness of the coatings it forms by 

accurately adjusting process parameters [55, 56]. 

The EPD process includes fundamentally three 
steps [57]:  

Creating a steady particles suspension. 

• The particles move towards the deposited pole 
by the effect of the electric field. 

• The deposition of particles on the surface of 
the electrode.  

Figure 7 illustrates a graph that shows these 

steps in the EPD process. 

 

Figure 7. The EPD steps are depicted 
schematically [57] 

The main difference between the electro-
phoretic deposition (EPD) process and the electro-
chemical deposition (ELD) process is that the 
former relies on the presence of suspended 
particles in a solvent, while the latter depends on 
the use of a solution containing salts., i.e. The 
positive and negative ions [58]. There are two basic 
types of EPD processes: cathodicEPD and anodic 
EPD. CathodicEPD is the process by which 
positive charges are deposited on the cathode 
(negative electrode).and anodic EPDis the 
accumulation of negative charges on the anode, or 
positive electrode. As depicted in Figure 8 [59]. 
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Figure 8.  Schematic of the procedure for 
electrophoretic deposition [59] 

6. BIOCOATINGSEFFECTS ON BONE 
REGENERATION, TISSUE ADHESION AND 
BIOCOMPATIBILITY OF TITANIUM ALLOYS 
IMPLANTS 

The primary criteria for choosing a coating 
material are (a) sufficient mechanical dependability, 
adhesion strength, and fracture toughness to 
endure the applied forces; (b) resistance to 
corrosion in bodily fluid environments; and (c) 
biocompatibility and absence of inflammation, 
toxicity, or other undesirable effects. Biomedical 
coatings can be categorised into three primary 
classes based on how well they function in the 
organism: bioinert, bioactive, and bioresorbable. 
Bioactive coatings, as opposed to bioinert, are 
biomaterials that have the ability to promote the 
regeneration of surrounding tissue and cells around 
the foreign graft and the release of bioactive 
chemicals to eliminate post-operative problems. 
Absorbable (bioresorbable) coatings are made to 
dissolve electrochemically in the human body and 
then be metabolised by tissue and cells [60-65]. 

Improving the metal implant surface's osteo-

conductive, osteo-inductive, and osteogenic pro-

perties is the primary goal of applying a 

biocompatible coating. Osteo-inductivity is the 

ability of the surface to promote the differentiation 

of precursor (stem) cells into osteoblasts, whereas 

osteo-conductivity is the coating's capacity to serve 

as a scaffold for the production of extracellular 

bone matrix where osteoblasts can adhere and 

multiply. In order to calcify the collagen matrix of 

the freshly produced bone structure, osteoblasts 

are alloyed to produce calcium nodules [66-70]. 

Because of its strong mechanical qualities, 

antibacterial and catalytic activity, and long-term 

durability against chemical and photocorrosion, 

TiO2 is a valuable material for biomedical 

applications. When immersed in SBF solution, TiO2 

can encourage the surface to develop calcium 

phosphate or bone-like apatite, making it appro-

priate for bone replacement and reconstruction. 

Furthermore, it was discovered that the anodisation 

of TiO2 coating on the surface of Ti substrates was 

a successful technique for lowering the implant's 

temperature rise during microwave diathermy 

treatment, which could offer a potential rehabili-

tation option for internal bone fracture fixation. Like 

TiO2, tantalum oxide (Ta2O5) may promote the 

quick attachment of soft tissue and bone and aid in 

the creation of bone-like apatite. The magnesium 

alloy's in vitro biocompatibility and early-stage 

corrosion resistance were both improved by tanta-

lum oxide made by reactive magnetron sputtering. 

When coated using a twin-gun magnetron 

sputtering method, a Ta2O5 coating containing 

12.5%Ag demonstrated both good cellular biocom-

patibility with skin fibroblast cells and enhanced 

antibacterial activity against S. aureus [71-73]. 

Since different metal ions (Ca2+, Sr2+, Mg2+, 
etc.) have been shown to have the ability to 
enhance osseointegration, grafting metal ions and 
compounds is another popular technique to 
increase the osteogenic ability of oxide coatings. 
Figure 9 provides an example of how different 
metallic ions affect the numerous processes 
involved in bone repair [74]. 

 

Figure 9. Some ions' therapeutic effects include 
angiogenic, osteogenic, anti-inflammatory, and 

antibacterial action [60] 

Various photosensitisers can be used to alter 

the surface of TiO2 in order to produce reactive 
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oxygen species (ROS) that will kill bacteria when 

exposed to near-infrared (NIR) light. To increase 

biocompatibility, hydrothermally generated MoSe2 

nanosheets were placed on the surface of porous 

micro-arc oxidation (MAO) -prepared TiO2 coatings, 

and chitosan was applied by electrostatic bonding. 

Chitosan enhanced the hybrid coating's hydro-

philicity and biocompatibility, promoting osseoin-

tegration even in the presence of infection under 

NIR light. Under NIR irradiation, the coatings 

showed excellent in vivo and in vitro antibacterial 

properties against S. mutans due to the synergistic 

effect of hyperthermia and ROS generation. To 

alter the surface of composite collagen/poly-

dopamine/TiO2 coatings on Ti implants made by 

MAO and hydrothermal treatment, Han and co-

authors choose MoS2 because of its broad 

spectrum response [75-80]. 

7 .CONCLUSIONS 

This review provides a complete analysis to   
the properties of titanium and its alloys, as well as 
the impact of surface modification on medical 
implants used in orthopedic and dental implants 
and other applications. The analysis focuses on 
how these modifications extend the life of the 
implant in the body, achieve biocompatibility, and 
enhance osseointegration. This is done by coating 
these alloys with hydroxyapatite and titanium 
dioxide, as these coatings are characterized by 
their high corrosion resistance and excellent 
biocompatibility. 

Electrophoretically deposition is one of the 
most popular methods due to its versatility, 
simplicity and low cost. The electrophoretic process 
is affected by a number of factors, including the 
deposition time, the type of solution, and the volta-
ge used in the deposition process. Biomaterials 
have several difficulties, such as biocompatibility, 
durability, and corrosion. Comprehending the ways 
in which these variables impact the overall 
functionality of implants might facilitate the creation 
of novel materials that satisfy the requirements of 
patients. Biomaterials have several difficulties, 
such as biocompatibility, durability, and corrosion. 
Comprehending the ways in which these variables 
impact the overall functionality of implants might 
facilitate the creation of novel materials that satisfy 
the requirements of patients. This research is very 
important for the future since collaboration between 
scientists and engineers in this field can lead to 
tremendous progress in enhancing the quality of 
life for patients. In summary, the findings show that 
in order to satisfy the increasing demand, further 
research in the area of biomaterials is required, 
with an emphasis on developing coating and 
surface modification methods. 

Data Availability Statement 
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the authors: The data that support the findings of 
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IZVOD 

ISTRAŽIVANJE UTICAJA PREMAZA BIOMATERIJALA  NANEŠENOG 
ELEKTROFORETSKI NA PODLOGE TITANIJUMA I NJEGOVIH LEGURA: PREGLED 

Sadašnja studija govori o vrednosti poboljšanih biomaterijala, posebno premaza za titanijum i 
njegove legure koji se koriste u hirurškim postavkama. Demonstrira kako se procesi oblaganja kao 
što je elektroforetski (EPD) mogu koristiti za poboljšanje mehaničkih i bioloških kvaliteta ovih 
materijala. Pošto je titanijum lagan i otporan na koroziju, on je poželjan materijal za medicinske 
implantate koji se koriste u popravci tkiva i lečenju preloma. Studija takođe analizira upotrebu 
keramičkih premaza poput hidroksiapatita i TiO2 u promovisanju regeneracije kostiju, kao i 
probleme sa biokompatibilnošću i adhezijom tkiva koji se javljaju kod metalnih implantata. Pozitivni 
rezultati ukazuju na to da napredak u biomaterijalima može poboljšati rezultate lečenja i povećati 
efikasnost medicinskih implantata, čime se povećava kvalitet života pacijenata. 
Ključne reči: biopremaz, titanijum, antikorozivne legure, elektroforetsko taloženje 
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